建筑工程中混凝土施工质量控制策略研究

周扬

象山县重大交通项目建设管理中心 浙江 宁波 315700

摘 要:建筑工程中,混凝土施工质量关乎工程整体安全与耐久性。本文阐述混凝土材料特性、施工工艺流程及质量控制原理方法,分析人员、材料、设备、方法、环境等关键因素对质量的影响。从施工前、中、后三个阶段制定质量控制策略,并说明策略实施步骤、保障措施,强调持续改进与创新,为提升混凝土施工质量提供参考。

关键词: 混凝土施工; 质量控制; 关键因素; 控制策略; 质量保障

引言:在建筑工程领域,混凝土作为核心材料,其施工质量对建筑结构性能影响重大。随着建筑规模扩大与结构复杂程度提升,对混凝土施工质量要求愈发严格。当前,混凝土施工面临人员技能参差、材料质量波动、环境干扰等诸多挑战。深入探究混凝土施工质量控制策略,有助于提高工程质量,保障建筑安全,推动建筑行业高质量发展。

1 混凝土施工质量控制相关理论基础

1.1 混凝土材料特性

混凝土由水泥、骨料、水及外加剂等成分混合而成,各成分直接影响其性能。水泥作为胶凝材料,品种与强度等级决定混凝土强度发展基础,不同水泥的凝结速度和水化热释放规律,会改变硬化进程与抗裂能力^[1]。骨料中,粗骨料的颗粒形状、级配影响密实度,细骨料的细度模数与洁净度关系和易性,含泥量过高会削弱与水泥浆的粘结力。水的用量需严格把控,过量降低强度,缺水则影响施工和易性。外加剂可调节性能,减水剂提升强度,缓凝剂适配长距离运输,掺合料能优化和易性、降低水化热。混凝土的物理力学性能里,强度是承载核心,耐久性决定使用寿命,收缩与徐变易引发裂缝和结构变形,需通过材料优化与施工控制调节。

1.2 混凝土施工工艺流程

混凝土施工流程严谨,各环节操作规范关乎质量。原材料采购需匹配工程要求,进场后检验水泥安定性与强度、骨料级配与杂质。配合比设计结合结构性能需求,确定材料最佳用量,兼顾和易性与经济性。搅拌按顺序投料,控制时间确保均匀,监测坍落度判断和易性。运输需根据距离与温度防护,避免离析、初凝,长距离运输要持续搅拌。浇筑前清理施工部位,湿润模板与钢筋,分层按序浇筑,控制厚度与速度防冷缝。振捣选适配设备,把握间距、深度与时间,确保密实无气泡,防过振导致骨料下沉。养护在浇筑后及时开展,覆

盖保湿材料,依温度选洒水、喷雾等方式,保障时间促 进强度增长。

1.3 质量控制基本原理与方法

质量控制以保障质量符合设计要求为目标,遵循预防为主、全程管控原则,通过监督调整各环节减少缺陷。统计过程控制收集施工质量数据,分析变化趋势,判断过程是否稳定,及时纠正异常波动。因果分析法梳理材料、工艺、人员等影响因素,绘因果图找出质量问题根源。排列图法统计各类质量问题发生频次,按影响程度排序,优先解决关键问题。这些方法贯穿施工全程,为质量控制策略提供思路与工具,助力系统性识别风险、优化流程,保障混凝土施工质量。

2 建筑工程中混凝土施工质量控制的关键因素分析

2.1 人员因素

参与混凝土施工的各类人员直接影响施工质量。施工人员负责搅拌、浇筑、振捣等实操环节,技能不熟练易导致振捣不实出现蜂窝麻面,或浇筑顺序混乱产生冷缝。技术人员承担配合比设计、施工方案制定等工作,对材料特性与施工工艺掌握不足,会使配合比适配性差,或方案未考虑现场实际条件。管理人员若质量管控意识薄弱,易忽视施工过程中的违规操作,导致质量隐患积累^[2]。针对这些问题,需通过定期培训提升人员能力,施工人员侧重实操技能训练,熟悉设备操作与规范流程;技术人员加强材料与工艺知识学习,提升方案设计合理性。同时建立考核机制,将质量表现与岗位评价关联,强化全员质量意识,确保各岗位人员按标准履职。

2.2 材料因素

混凝土原材料质量决定混凝土最终性能与施工质量。水泥强度不稳定、安定性不合格,会导致混凝土强度不足或出现开裂;骨料级配不合理、含泥量过高,会降低混凝土密实度与和易性;外加剂与水泥相容性差,可能引发凝结时间异常或强度发展受阻。原材料采购环

节若未严格筛选供应商,易购入质量不达标的材料;运输过程中防护不当,会导致水泥受潮结块、骨料混入杂质;储存时未按类别分区,可能出现材料混杂或变质。加强原材料质量控制,需在采购时核查供应商资质,进场后按规范逐批检验,不合格材料严禁使用;运输时做好防潮、防污染措施;储存时保持场地干燥,分类堆放并做好标识,避免材料误用。

2.3 机械设备因素

混凝土施工依赖搅拌机、运输车、泵车、振捣器等机械设备,设备性能与状态直接影响施工质量。搅拌机计量系统不准会导致材料配比偏差,搅拌叶片磨损会使混凝土混合不均;运输车罐体转速不足或未持续搅拌,易造成混凝土离析;泵车输送管道堵塞会中断浇筑,影响施工连续性;振捣器功率不足或振幅异常,会导致混凝土振捣不密实。选择机械设备需结合施工规模与工艺要求,大型项目适配高效搅拌站与大容量运输车,复杂结构部位选用小型灵活的振捣设备。日常需建立设备维护保养制度,定期检查关键部件状态,及时更换磨损零件;施工前对设备进行调试,确保计量、动力等系统正常运行,避免设备故障影响施工质量。

2.4 施工方法因素

混凝土施工工艺方法的合理性对质量至关重要。搅拌时投料顺序不当、搅拌时间不足,会影响混凝土和易性;浇筑时未按分层厚度与顺序进行,易产生冷缝或漏振;养护不及时或方式不当,会导致混凝土强度发展缓慢、表面开裂。不同施工条件需采用适配的方法,高层建筑浇筑需选用泵送工艺,搭配布料机均匀布料;大体积混凝土施工需采用分层浇筑与温控措施,降低水化热影响;冬期施工需调整搅拌、浇筑流程,减少低温对混凝土的不利影响。优化施工方案需结合工程结构特点与现场条件,细化各环节操作要点,明确质量控制标准;施工中根据实际情况动态调整方法,如遇骨料含水率变化及时调整配合比,确保施工方法始终适配质量要求。

2.5 环境因素

施工现场的温度、湿度、风力等环境条件,对混凝土施工质量影响显著。高温环境下混凝土水分蒸发过快,易出现表面干缩裂缝,坍落度损失加快影响浇筑;低温环境会延缓水泥水化,导致混凝土强度发展缓慢,甚至出现冻害;高湿度或雨天施工,易使雨水混入混凝土改变水灰比,影响强度;大风天气会加剧混凝土表面失水,还可能吹倒临时防护设施,威胁施工安全与质量。针对不同环境需采取管控措施,夏季施工避开正午高温时段,对骨料洒水降温、混凝土运输罐车覆盖遮

阳;冬季施工对骨料预热、拌合水加热,浇筑后覆盖保温材料;雨天施工搭建防雨棚,暂停浇筑时做好施工缝处理;大风天气加强现场防护,对已浇筑混凝土覆盖保湿,减少环境因素对质量的干扰。

3 建筑工程中混凝土施工质量控制策略制定

3.1 施工前质量控制策略

设计阶段需加强图纸审查,细致核对混凝土结构的 尺寸、强度等级及构造要求,确保设计方案符合施工实 际与相关规范。主动与设计单位沟通,针对图纸中可 能存在的模糊表述或与现场条件不符的设计内容,及时 反馈并协商解决,为施工提供精准的技术依据[3]。施工 方案编制需结合工程规模、结构特点与现场环境, 明确 搅拌、运输、浇筑等各环节的工艺参数,细化质量控制 要点与安全防护措施。方案编制完成后,组织技术、施 工、管理等多方面人员共同审核,从技术可行性、流程 合理性等角度提出优化建议,确保方案能够有效指导施 工。原材料采购需建立严格的供应商筛选机制,优先选 择质量稳定、信誉良好的合作方,签订采购合同时明确 质量标准与验收要求。原材料进场后,按批次对水泥强 度、骨料级配、外加剂性能等进行检验,只有全部指标 达标才可投入使用。根据施工方案配备适配的机械设 备,大型项目需选用高效搅拌站与泵送设备,小型构件 施工可搭配小型振捣器。施工前对设备进行全面检查, 校准搅拌机计量系统,调试振捣器振幅,检修运输车罐 体密封性,确保设备性能稳定。

3.2 施工过程中质量控制策略

混凝土搅拌时严格按照配合比投料,安排专人监督 计量过程,避免材料用量偏差。根据搅拌设备的功率与 容量,确定合理的搅拌时间,确保水泥、骨料、外加剂 等充分混合,搅拌完成后通过观察混凝土色泽、检测坍 落度,判断和易性是否达标。运输设备需根据运输距离 选择, 短距离运输可用小型罐车, 长距离则选用带搅拌 功能的专用运输车,防止混凝土离析。合理规划运输路 线,避开拥堵路段,控制运输时间,确保混凝土到场后 能及时浇筑。浇筑前规划好浇筑顺序,框架结构优先浇 筑柱体再浇筑梁板,大体积混凝土采用分层浇筑方式, 控制每层浇筑厚度与间隔时间。振捣时根据构件尺寸选 用插入式或平板式振捣器,振捣棒移动间距均匀,插入 深度至下层混凝土5厘米左右,直至混凝土表面无气泡溢 出、泛浆为止。养护需在浇筑完成后12小时内开始,覆 盖土工布或塑料膜保湿,高温天气增加洒水频次,低温 时覆盖保温棉被,养护时间不少于14天,确保混凝土强 度稳步增长。

3.3 施工后质量控制策略

按规范在浇筑现场留置标准养护试块与同条件养护试块,标准试块放入养护室养护,同条件试块放置在构件旁同步养护。达到龄期后送检测机构进行抗压强度试验,根据试验结果评定混凝土强度是否满足设计要求。施工完成后对混凝土结构外观进行全面检查,重点排查表面裂缝、蜂窝、麻面、露筋等缺陷。细微裂缝采用环氧树脂浆液封闭,蜂窝麻面先剔除松散部分,再用高一等级细石混凝土修补,严重缺陷需制定专项加固方案。质量验收时组织技术、质量、监理等人员共同参与,对照设计图纸与验收标准,检查混凝土强度、外观质量、结构尺寸等指标。同时整理施工过程中的原材料检验报告、配合比通知单、施工日志、试块检测报告等资料,按规范分类归档,为工程竣工验收与后续维护提供完整依据。

4 建筑工程中混凝土施工质量控制策略的实施与保障

4.1 质量控制策略的实施步骤

质量控制策略实施需遵循清晰流程,先结合工程进度与施工节点制定详细实施计划,明确各环节任务分工、时间节点与质量标准,让策略落地有章可循^[4]。随后组织全员培训,针对不同岗位人员讲解策略要点,施工人员需掌握具体操作规范,技术人员需熟悉方案优化方法,管理人员需明确监督重点。培训后按计划开展质量控制活动,从原材料检验到混凝土浇筑、养护,每个环节严格执行既定标准。同时建立监督检查与改进闭环,定期核查策略执行情况,发现偏差及时分析原因,调整实施方式,确保策略始终贴合施工实际。

4.2 质量管理体系的建立与完善

构建混凝土施工质量管理体系,需划分各部门与人员的质量职责,技术部门负责方案设计与技术指导,施工部门承担现场操作质量管控,物资部门把控原材料质量,各岗位人员明确自身工作对应的质量要求,避免责任模糊。体系运行中形成标准化流程,从原材料进场检验到施工后质量验收,每个环节都有固定操作规范与记录要求,形成长效管理机制。定期组织体系评审,邀请内部各部门与外部专业力量参与,分析运行中存在的漏洞,如流程衔接不畅、标准过时等问题,及时修订体系内容,确保持续适配工程需求。

4.3 质量监督与考核机制

组建专职质量监督小组,成员涵盖技术、施工、质量等领域人员,对混凝土施工全流程进行巡查,重点关注搅拌计量、浇筑振捣、养护等关键环节,发现违规操作或质量隐患立即要求整改,并跟踪整改效果。制定具体质量考核指标,包括原材料合格率、混凝土试块强度达标率、外观缺陷整改率等,明确各指标的合格要求。考核时结合日常监督记录与阶段性检查结果,对各部门与人员进行综合评价,考核结果与绩效分配、岗位晋升直接关联,促使员工主动重视并落实质量管控要求。

4.4 持续改进与创新

畅通质量改进建议渠道,鼓励员工结合施工实际提出优化想法,对合理建议及时采纳并应用于实践。针对反复出现的质量问题,如特定部位易出现裂缝、某类原材料质量波动大等,组织人员深入分析根源,从材料选择、工艺优化、管理流程等方面制定改进措施,避免问题重复发生。密切关注行业动态,学习新型混凝土检测技术、智能养护设备等先进成果,结合工程特点引进适配的技术与方法,如采用智能传感器监测混凝土内部温度变化,提升养护质量管控精度,通过持续改进与创新,不断增强质量控制能力。

结束语

建筑工程中混凝土施工质量控制是一项系统性、综合性工作。通过对关键因素剖析,制定并实施全流程质量控制策略,构建完善质量管理体系与监督考核机制,鼓励持续改进与创新,能有效提升混凝土施工质量。未来,随着技术发展,需不断探索更先进的质量控制方法,以适应建筑行业日益增长的质量需求,为建筑工程质量提供更坚实保障。

参考文献

[1]冯遥,强裔.建筑工程中混凝土结构的施工质量控制 [J].砖瓦,2023,(11):116-118+121.

[2]成城.房屋建筑工程中混凝土施工质量控制[J].中国住宅设施,2023,(02):133-135.

[3] 卞学春.建筑工程混凝土施工质量控制策略探析[J]. 城市建筑空间,2022,29(S2):434-435.

[4]李伟.混凝土工程质量控制在高层建筑施工中的应用研究[J].砖瓦,2024,(06):116-118+121.