水利水电中的水闸工程安全运行及其检查养护

田 园

南阳市鸭河口水库运行保障中心 河南 南阳 474650

摘 要:水闸工程安全运行对水利水电系统意义重大。其核心要素涵盖结构稳定性、启闭设备可靠性、水流控制能力与环境适应性。检查养护体系包括日常、定期专项与特殊情况检查,关键部位养护涉及闸门、混凝土结构等。通过优化操作规程、加强人员培训、运用信息化手段与规范备品备件管理,可提升水闸安全运行水平,保障其长期稳定发挥功能。

关键词:水闸工程;安全运行;检查养护;养护技术;管理策略

引言:水闸作为水利水电工程的关键设施,承担着防洪、灌溉、供水等重要任务,其安全运行直接关系到区域经济社会稳定与生态安全。随着水利工程规模扩大与运行年限增长,水闸工程面临结构老化、设备磨损、环境变化等多重挑战。构建科学的安全运行体系与检查养护机制,成为保障水闸功能可持续性的核心任务。本文从核心要素、检查养护、技术要点与管理策略四方面展开探讨。

1 水闸工程安全运行的核心要素

1.1 结构稳定性

闸室、闸墩、底板等主体结构的完整性是水闸安全运行的基础,需持续关注结构表面是否出现裂缝、剥落等损伤,避免局部破损扩大影响整体性能^[1]。基础承载力与抗滑稳定性直接关系水闸能否抵御水流冲击和自身重量,需通过日常观察和定期评估,确保基础不发生不均匀沉降或滑动位移。两岸连接建筑物与主体结构形成有机整体,其协同作用体现在共同分担水流荷载、维持岸坡稳定,需保障翼墙、护坡等连接结构与主体结构衔接紧密,不出现脱节或变形,确保整体受力均衡。

1.2 启闭设备可靠性

机械传动系统的润滑与磨损控制是设备稳定运行的关键,需定期添加适配润滑剂,减少齿轮、轴承等部件的摩擦损耗,避免因部件卡滞影响闸门运行。电气控制系统的绝缘与接地保护不可或缺,需检查线路绝缘层是否老化破损,接地装置是否牢固,防止漏电或短路引发设备故障。液压系统的密封性与压力稳定性影响闸门启闭力度和精度,需排查油管接口、密封件是否渗漏,监测系统压力是否保持在合理区间,确保液压动力传输稳定。

1.3 水流控制能力

过闸流量均匀性与消能效果决定水流对水闸的冲击程度,需通过优化闸门开启方式,避免水流形成漩涡、

折冲等紊乱流态,保障消力池、海漫等设施充分发挥 消能作用。闸门启闭同步性与防卡阻机制需重点把控, 确保多扇闸门升降速度一致,同时清理闸门轨道内的杂 物,防止闸门运行中出现卡滞现象。上下游水位监测需 实时进行,结合水位变化趋势及时调整闸门运行状态, 提前规避水位差过大对工程结构造成的不利影响。

1.4 环境适应性

水闸需具备抵御地震、冲刷、腐蚀等自然因素的能力,通过优化结构设计增强抗震性能,定期修复受水流冲刷的基础和护坡,对金属结构采取防腐涂层等保护措施。泥沙淤积会影响过闸流量和闸门运行,需制定合理的清淤策略,根据淤积速度和部位选择适宜的清淤方式,保持闸室和上下游河道畅通。冰冻期需落实防冻胀措施,对闸门、启闭设备等采取保温防护,及时清除闸室及周边的积冰,避免冰层膨胀对工程结构造成破坏。针对高温、暴雨等极端天气,需提前检查排水系统通畅性,加固易受风雨影响的附属设施,确保水闸在复杂环境下持续稳定运行。

2 水闸工程检查养护体系

2.1 日常检查内容

日常检查对水闸工程安全运行意义重大。外观检查时,需着重查看混凝土结构表面,像闸室、闸墩、翼墙等部位,查看有无裂缝生成,细微裂缝可能因水流长期冲刷、温度变化逐渐扩大,威胁结构安全;渗漏情况也不容忽视,观察闸底、墙身有无水迹渗出,这可能暗示止水设施损坏或基础防渗性能下降;剥落现象若出现在混凝土表面,会使内部钢筋失去保护,加速钢筋锈蚀。设备状态检查聚焦启闭机^[2]。倾听运行声音,若有尖锐摩擦声或异常撞击声,预示着机械传动部件可能磨损、松动;检查油位,确保润滑油量充足,满足设备润滑需求,防止干磨损伤设备;关注温度,设备长时间运行温

度过高,表明可能存在散热不良或机械故障,如电机过载、轴承卡滞等。环境监测方面,密切留意上下游水位变化,水位突变可能影响水闸运行工况。观察水流形态,若出现漩涡、折冲水流,会加剧对水闸结构冲刷。周边地质变化同样关键,查看闸基及两岸有无塌陷、裂缝,防止因地质问题导致水闸基础不稳。

2.2 定期专项检查

定期专项检查能深入排查水闸隐患。结构检测环 节,通过钻芯取样等方式测定混凝土强度,判断是否满 足设计要求,强度降低可能源于材料老化、病害侵蚀; 采用钢筋锈蚀仪检测钢筋锈蚀程度, 锈蚀严重会削弱钢 筋承载能力;利用水准仪、全站仪进行沉降观测,监 测闸室、基础等部位沉降量,不均匀沉降会致使结构开 裂、变形。设备性能测试中,检查闸门密封性,可在闸 门关闭后, 查看缝隙处是否漏水, 密封不严会影响水闸 挡水效果;进行启闭力校核,保证启闭设备能正常带动 闸门运行,避免因启闭力不足或过大造成设备损坏、闸 门运行故障;对电气系统开展绝缘电阻测试、接地电阻 检测等电气安全检查, 防止漏电事故发生。水流条件分 析时,借助流速仪、流态观测仪等设备,研究过闸流 态,优化水流条件,减少不利流态对水闸及下游河道影 响;测量消力池冲刷深度,评估消能防冲设施运行状 况,冲刷过深可能破坏消力池结构,降低消能效果。

2.3 特殊情况检查

极端天气后需即刻开展特殊情况检查。暴雨、台风过境,检查水闸结构表面有无因强风、暴雨冲击产生新裂缝、破损;基础是否被雨水冲刷掏空;附属设施如栏杆、照明设备是否损坏。冰冻期结束,查看结构受冻胀影响情况,像混凝土有无冻融破坏、止水设施是否失效。地震后,对水闸进行抗震性能复核。检查结构关键部位,如闸墩与闸室连接处、基础与上部结构衔接处有无裂缝、错位;评估整体抗震能力,判断是否需加固处理,保障水闸后续安全运行。水闸长期停用时,启用前全面检查。除常规检查内容,着重检查设备能否正常启动,如启闭机电机能否正常运转、液压系统能否建立压力;检查电气设备绝缘性能,因长期闲置,电气元件易受潮,绝缘性能下降;对闸门进行试运行,查看运行是否顺畅,有无卡滞现象,确保水闸启用时能正常发挥功能。

3 关键部位养护技术要点

3.1 闸门与启闭机养护

闸门长期暴露在水与空气环境中,易受腐蚀影响性能,涂层维护需定期清除表面锈迹与老化涂层,重新涂刷适配防腐涂料,形成完整防护层隔绝腐蚀介质^[3]。对于

水下或潮湿环境中的闸门,阴极保护能有效减缓腐蚀,通过在闸门金属结构上设置牺牲阳极,利用电化学原理阻止金属锈蚀。启闭机润滑系统关乎运行顺畅,需按规定周期放空旧油脂,清洁油箱与管路,避免杂质残留影响润滑效果,再注入适配新油脂,确保齿轮、轴承等传动部件得到充分润滑,减少摩擦损耗。钢丝绳作为连接闸门与启闭机的关键部件,需定期涂抹防锈油脂,保持表面润滑隔绝水分与空气,同时检查张力变化,通过调整张紧装置使各股钢丝绳受力均匀,避免因局部张力过大导致断裂风险。

3.2 混凝土结构维护

混凝土结构出现裂缝时,表面封闭适用于宽度较窄的浅表裂缝,采用环氧树脂砂浆等材料填补裂缝表面,阻止水分与有害物质渗入内部。对于较深或贯穿性裂缝,压力灌浆通过专用设备将灌浆材料压入裂缝内部,填满缝隙并固化,恢复结构整体性。表面防护需根据混凝土所处环境选择合适方式,涂层防护通过涂刷防水防腐涂料形成保护膜,防水卷材则采用粘贴方式覆盖在混凝土表面,增强抗渗能力。混凝土碳化会降低耐久性,需定期监测碳化深度,通过涂刷阻碳剂减缓碳化进程,同时采取保湿养护、优化混凝土表面环境等措施,提升整体耐久性。

3.3 止水设施更新

橡胶止水带长期受水流冲刷、温度变化影响易老化,出现开裂、变形时需及时更换,拆除旧止水带前先松动固定螺栓,清理安装槽内残留的密封胶与杂物,用砂纸打磨槽壁使其平整干净,再根据止水带型号裁剪新止水带,确保长度与安装槽匹配,安装时对准位置,压实固定后拧紧螺栓,保证与混凝土接触面紧密贴合,无缝隙。止水螺栓长期使用可能出现松动,需定期用扳手逐一对其紧固,紧固过程中控制力度,避免过度用力导致螺栓损坏,紧固后进行密封性测试,在止水部位外侧设置挡水围堰,向围堰内注水至规定高度,静置一段时间观察围堰内侧是否有水渗漏,确保止水设施密封性能达标。

3.4 电气系统维护

电气线路长期运行易出现绝缘层老化、破损,需定期进行绝缘检测,选用符合量程的绝缘电阻表,将表计接线端分别连接线路两端,匀速摇动摇柄测量绝缘电阻,若测量值低于规定标准,及时更换老化线路,更换时选用同规格、同材质的导线,做好线路接头的绝缘处理,避免漏电事故。接地装置是保障电气安全的重要部分,定期用接地电阻测试仪测试接地电阻,若电阻值超标,开挖检查接

地极是否锈蚀、连接点是否松动,用钢丝刷清理接地极表面锈蚀,重新紧固连接螺栓,必要时增设接地极并与原有接地网可靠连接,确保接地效果符合要求。防雷设施需定期检查接闪器、引下线等部件是否完好,查看接闪器有无变形、断裂,引下线有无锈蚀、松动,连接处螺栓是否牢固,发现问题及时修复,更换损坏部件时选用同型号产品,确保雷电能通过防雷设施顺畅导入大地,避免雷电对电气设备与人员造成伤害。

4 安全运行管理策略

4.1 操作规程优化

标准化启闭流程需明确闸门开度控制的具体要求,根据不同运行工况确定合理开度范围,避免一次性大幅调整开度引发水流剧烈波动。分级操作应按预设步骤逐步调节闸门,先小幅度开启观察水流变化,待流态稳定后再继续调整,调整过程中做好实时记录,便于后续追溯与优化,确保过闸水流平顺[4]。应急操作预案要针对设备故障、水位超限等突发情况制定清晰处置流程。设备故障时,明确故障排查的先后顺序,如先检查电气系统再排查机械部件,同时确定临时替代运行方案,方案需经实际验证确保可行;水位超限时,规定闸门应急启闭的速度与幅度,明确与上下游相关水利设施的联动调度方式,提前与相关管理单位建立沟通机制,快速缓解水位压力。

4.2 人员培训与考核

定期技术培训需结合水闸实际设备与运行特点,邀请经验丰富的技术人员讲解设备操作要点,包括不同型号启闭机的操作差异、常见故障识别方法,同步开展安全规范系统培训,内容涵盖高空作业防护、电气设备操作禁忌等,确保操作人员在掌握设备操作技能的同时,筑牢安全操作意识。培训后通过理论与实操考核检验学习效果,全面夯实操作人员的专业知识与安全素养。应急演练要模拟真实场景开展,防汛抢险演练设置不同量级洪水情境,演练人员需完成闸门快速启闭、沙袋堆筑加固、人员疏散引导等任务;设备突发故障演练则模拟电机骤停、闸门卡滞等情况,演练后组织复盘总结,分析不足并优化预案,检验操作人员故障排查与应急处置能力,通过演练提升团队协同应对水平。

4.3 信息化监测手段

远程监控系统需全面覆盖关键监测指标,水位监测 设备布设在上游取水口、下游河道等关键位置,实时采 集水位数据;位移监测装置安装在闸室、闸墩等结构部位,捕捉微小位移变化;应力传感器嵌入闸门与主体结构连接处,实时监测受力情况,所有数据通过传输网络汇聚至监控中心,中心安排专人值守,确保数据实时查看与异常及时发现。智能预警平台需预设合理的预警阈值,阈值设定结合工程设计标准与实际运行经验,当监测数据超出正常范围时,系统自动触发报警功能,通过声光提示、短信通知等方式及时告知管理人员。平台还应具备数据趋势分析功能,通过对比历史数据预判可能出现的异常,为提前采取防控措施提供依据。

4.4 备品备件管理

关键部件库存清单需梳理闸门密封件、启闭机轴承、电气接触器等易损部件,明确每种部件的库存数量与规格型号,清单定期更新并同步至相关管理部门,确保与水闸现有设备匹配。更新周期根据部件使用寿命与实际损耗情况确定,对频繁使用的部件缩短检查间隔,发现老化迹象及时补充库存。供应商资质审核要考察其生产能力、产品质量口碑与售后响应速度,优先选择具备长期供货能力、产品经权威检测合格的供应商,建立供应商档案并定期评估。建立应急采购渠道,与多家供应商签订应急供货协议,明确紧急情况下的供货时间与运输方式,协议中注明违约责任,避免因部件短缺影响水闸正常运行。

结束语

水闸工程安全运行与检查养护是一项长期且系统的 工程。从明确安全运行核心要素,到构建全面细致的检查养护体系,再到掌握关键部位养护技术与科学管理策略,每个环节都紧密相连、缺一不可。只有持续强化安全意识,不断提升技术水平与管理能力,才能确保水闸工程在复杂环境下稳定运行,为水利水电事业发展提供坚实保障,更好地服务经济社会与生态环境建设。

参考文献

[1]郭涛.水利水闸设施管理及养护要点研究[J].水上安全,2024,(23):34-36.

[2]马福恒,胡江,谈叶飞.我国大中型水闸安全鉴定现状与对策建议[J].中国水利,2024(1):38-41.

[3]冯伟.浅谈水利工程管理中水闸安全运行与检查养护[J].治淮,2022(12):42-44.

[4]于天晓.水利工程管理中水闸安全运行措施[J].水上安全,2023(13):176-178.