机电安装中机械设备的安装与调试

张永万

中国水利水电第八工程局有限公司 湖南 长沙 410004

摘 要:随着机电一体化技术的迅猛发展,机电安装工程在工业、建筑等众多领域的重要性日益凸显。本文聚焦机电安装中机械设备的安装与调试。首先概述机电安装中机械设备的基本情况,接着详细阐述安装技术要点,涵盖安装基础准备、设备就位与找正、精度调整与检测、部件连接与装配以及设备防护与密封处理等方面。同时,深入探讨机械设备调试技术,包括调试前检查准备、单机无负荷调试、单机带负荷调试、系统联动调试以及调试后性能测试与验收。旨在为机电安装领域机械设备的安装与调试提供全面、系统的技术参考,确保设备安装调试质量,保障机电系统稳定运行。

关键词: 机电安装; 机械设备; 安装技术; 调试技术

引言:在现代化工业与基础设施建设飞速发展的当下,机电安装工程的重要性日益凸显。机械设备作为机电安装工程的核心组成部分,其安装与调试质量直接关系到整个机电系统的性能、稳定性及运行效率。精准规范的安装与调试不仅能确保设备正常运行,延长使用寿命,还能有效降低后期维护成本,避免因设备故障引发的生产事故与经济损失。然而,机电安装中机械设备的安装与调试涉及多学科知识与复杂技术环节,对技术人员专业素养要求较高。因此,深入研究并掌握相关技术要点,对于提升机电安装工程质量,推动行业技术进步具有至关重要的现实意义。

1 机电安装中机械设备的概述

在机电安装工程领域,机械设备是构成整个系统功能的核心要素,其涵盖范围广泛,包括各类生产加工设备、动力设备、传输设备等,这些设备在不同行业和场景中发挥着关键作用。从功能特性来看,机械设备具有多样性和专业性。生产加工设备如数控机床、注塑机等,能够按照预设程序对原材料进行精确加工,满足产品制造的精度和质量要求;动力设备如发电机、电动机等,为整个系统提供源源不断的动力支持,确保设备劳效。在机电安装工程中,机械设备的安装与调试是至关重要的环节。合理的安装布局能够充分利用空间资源,提高生产效率,同时便于设备的维护与管理。而精准的调试工作则可以确保设备在投入运行后,各项性能指标达到设计要求,实现稳定、高效、安全的运行状态[1]。

2 机电安装中机械设备安装技术要点

2.1 安装基础准备

在机电安装中, 机械设备的安装基础准备是保障设 备稳定运行、精准安装的关键前提,需从多方面细致开 展工作。(1)基础设计与审核不容忽视。要依据设备的 重量、尺寸、运行特点等参数,结合安装场地的地质条 件,精心设计安装基础。设计完成后,组织专业人员严 格审核,确保基础的承载能力、抗震性能等满足设备运 行要求,避免因基础设计不合理导致设备安装后出现沉 降、振动等问题。(2)基础施工质量控制至关重要。严 格按照设计图纸和施工规范进行基础施工,选用符合标 准的建筑材料,保证基础的强度和稳定性。在施工过程 中,加强对混凝土浇筑、钢筋绑扎等关键工序的质量检 查,确保基础的尺寸精度和表面平整度符合要求,为设 备安装提供良好的基准面。(3)基础预处理工作要到位。 在设备安装前,对基础表面进行彻底清理,去除油污、 杂物等, 保证基础表面的清洁度。同时, 根据设备安装 要求, 在基础上准确预留地脚螺栓孔或预埋地脚螺栓, 并确保其位置、深度和垂直度符合设计标准, 为设备的 精准就位和固定奠定基础。

2.2 设备就位与找正

设备就位与找正是机电安装中机械设备安装的关键环节,对设备后续的稳定运行和精准操作起着决定性作用。 (1)设备就位需借助合适的起重运输工具,如吊车、叉车等,将设备平稳、安全地搬运至安装基础位置上方。在搬运过程中,要严格遵循操作规程,防止设备碰撞、倾倒,确保设备不受损坏。就位时,要缓慢、精准地将设备放置在基础上,避免因冲击力过大导致基础或设备受损。(2)找正是设备就位后的核心工作。水平找正可利用水平仪,通过在设备的关键部位放置水平仪,调整设备底部的支撑垫铁,使设备在水平方向达到规定的精度要求,保证设备运 行的平稳性。垂直找正则常用经纬仪或吊线坠的方法,检测设备在垂直方向上的偏差,并通过调整设备的安装位置或支撑结构进行校正。(3)对于一些大型或复杂的设备,还需进行中心位置找正。以设备的中心线为基准,通过测量和调整,使设备的中心与安装基础的中心重合,确保设备各部件之间的相对位置准确无误,为后续的精度调整和正常运行创造良好条件。

2.3 精度调整与检测

(1)要明确精度调整的目标与标准。依据设备的设 计图纸、技术说明书以及相关行业规范, 精确确定设备 各部件在位置、标高、水平度、垂直度等方面的精度要 求。这些标准是调整工作的依据,只有严格遵循,才能 保证设备安装后能正常发挥性能。(2)运用合适的工具和 方法进行精度调整。针对不同精度指标,选用千分表、 水准仪、激光对中仪等专业测量工具。在调整过程中, 采用逐步逼近法,先进行粗调,使设备大致接近目标位 置和精度范围,再进行细调,对各个关键部位进行微 调,确保设备各项精度指标逐步达到设计要求。同时, 要注意调整过程中的相互影响, 避免一处调整影响其他 部位的精度。(3)全面开展精度检测工作。调整完成后, 使用高精度的检测设备对设备进行全面检测,不仅要检 测静态精度,还要模拟设备实际运行工况,检测动态精 度。通过检测数据与标准值的对比分析,判断设备精度 是否合格。若检测结果不符合要求,需重新进行调整, 直至设备精度满足设计及使用要求, 为设备的稳定运行 提供可靠保障。

2.4 部件连接与装配

(1)要做好连接前的准备工作。仔细核对部件的规 格、型号、数量,确保与设计要求一致,避免因部件错 误导致装配失误。同时,对部件的连接面进行清洁处 理,去除油污、铁锈、毛刺等杂质,保证连接面的平整 度和清洁度,为良好的连接创造条件。对于有密封要求 的连接部位,还需提前准备好合适的密封材料。(2)选 择恰当的连接方式。根据部件的特点和设计要求, 合理 选用螺栓连接、焊接、铆接、卡扣连接等连接方式。在 螺栓连接时,要按照规定的扭矩和顺序进行紧固,确保 螺栓受力均匀,防止因紧固不当导致部件松动或变形。 对于焊接连接,要严格控制焊接工艺参数,保证焊缝质 量,避免出现气孔、裂纹等缺陷。(3)注重装配的顺序 和精度。按照设备装配图纸和技术要求,遵循合理的装 配顺序, 先装基础部件, 再装主要部件, 最后装辅助部 件。在装配过程中,要使用合适的量具对部件的相对位 置、间隙、同轴度等精度指标进行检测和调整,确保各 部件之间的配合精度符合设计要求,保证设备装配后的 整体性能。

2.5 设备防护与密封处理

设备防护与密封处理是保障设备稳定运行、延长使用寿命的关键环节。(1)针对设备外壳防护,需依据设备所处环境选择合适防护等级。在多尘、潮湿或腐蚀性气体环境中,应采用具备防尘、防水、防腐蚀性能的外壳材料,如不锈钢或特殊工程塑料,并确保外壳结构紧密,无缝隙,防止外界物质侵入设备内部,损坏核心部件。(2)做好设备的电气防护。对电气线路进行合理布局与固定,避免线路松动、磨损导致短路或漏电。同时,为电气元件安装防护罩,防止灰尘、水汽等进入,影响元件性能。(3)密封处理不容忽视。对于设备的连接部位,如法兰、管道接口等,采用高质量的密封垫片或密封胶,确保密封效果,防止介质泄漏。对于设备的运动部件,如轴承、齿轮等,采用合适的润滑与密封方式,减少磨损,防止润滑剂泄漏和外界杂质进入,保证设备运行的平稳性和可靠性^[2]。

3 机电安装中机械设备调试技术要点

3.1 调试前检查准备

调试前的检查准备是机电安装中机械设备调试工作顺 利开展的重要前提,需全面且细致地进行各项检查。(1)进 行设备安装精度复查。对照设备安装图纸与设计要求,使 用专业的测量工具,如激光对中仪、水平仪等,对设备的 安装位置、水平度、垂直度、同轴度等关键精度指标进行 复测。确保设备安装精准无误,避免因安装偏差影响调试 效果和设备后续运行性能。(2)开展电气系统全面检查。 仔细核查电气线路的连接是否正确、牢固,有无短路、 断路、虚接等问题。对电气元件进行逐一检查,确认其规 格、型号与设计相符,且性能良好。同时,检查接地装置 是否可靠,保证设备运行时的电气安全。(3)做好调试工 具与资料准备工作。准备好调试所需的各类工具,如万用 表、转速表、压力表等,并确保工具的精度和完好性。收 集并整理设备的说明书、调试大纲、电气原理图等资料, 以便在调试过程中随时查阅参考,为调试工作的顺利进行 提供有力的技术支持和保障。

3.2 单机无负荷调试

(1)进行设备本体检查。查看设备外观有无损伤、变形,确保设备完整无缺。检查设备各部件的安装位置是否准确,连接是否紧固,尤其是关键部位的螺栓、螺母,防止因松动导致运行故障。同时,确认设备的防护装置,如防护栏、防护罩等是否安装到位,保障操作人员安全。(2)开展电气系统检查。仔细核查电气线路的连

接是否正确、牢固,避免出现短路、断路等隐患。检查电气元件的规格、型号是否与设计相符,确保其性能正常。对电气控制柜进行清洁,检查内部的接线端子有无松动、氧化现象,保证电气信号传输稳定。(3)做好调试环境与工具准备。确保调试现场整洁、通风良好,周围无易燃易爆物品。准备好调试所需的各类工具,如万用表、转速表等,并检查工具的精度和完好性,为调试工作的顺利推进提供有力保障。

3.3 单机带负荷调试

(1)要做好调试前的最终确认。再次检查设备各连接 部位的紧固情况,确保传动部件运转灵活无卡阻;核查 电气系统接线无误,仪表显示正常且量程合适;确认润 滑系统油位、油质符合要求,冷却系统循环畅通,为单 机带负荷运行提供可靠保障。(2)逐步增加负荷进行调 试。先以低负荷启动设备,密切观察设备的运行状态, 包括振动、噪声、温度等参数,确保其在正常范围内。 随着设备运行稳定,按照预定方案逐步增加负荷,每次 增加负荷后都要停留一定时间, 让设备充分适应负荷变 化,同时持续监测各项性能指标,判断设备能否承受相 应负荷。(3)调试完成后进行全面评估。对比设备在带负 荷运行过程中的实际参数与设计参数,分析偏差产生的 原因。检查设备有无异常磨损、泄漏等情况,对发现的 问题及时记录并处理。只有当设备各项性能指标均满足 设计要求,运行稳定可靠时,单机带负荷调试才算成功 完成。

3.4 系统联动调试

(1)要做好联动前的细致筹备。全面检查各单机设备,确保其单机调试合格,运行状态良好,各项参数稳定且在正常范围。对系统中的管道、线路进行复查,保证连接紧密、无泄漏,电气控制线路准确无误。同时,准备好调试所需的工具、仪器,组建专业的调试团队,明确各成员职责分工,确保调试工作有序开展。(2)按照预定顺序启动系统。依据系统工艺流程和设计要求,先启动辅助设备,如冷却水泵、通风设备等,待其运行稳定后,再逐步启动主要设备。在启动过程中,密切观察设备的启动电流、电压等电气参数,以及设备的振动、噪声等机械参数,确保设备启动平稳。(3)进行系统联动

运行监测与调整。系统全面启动后,持续监测各设备的运行参数和系统整体性能,如流量、压力、温度等。根据监测结果,对系统进行必要的调整和优化,确保各设备之间协调配合,系统能够稳定、高效地运行,达到设计要求的各项指标。

3.5 调试后性能测试与验收

(1)要开展全面性能测试。依据设备的设计参数与行 业标准,运用专业测试仪器,对设备的各项性能指标进 行精准测量。涵盖设备的运行效率、功率消耗、产出质 量等关键指标,同时测试设备在不同工况下的稳定性和 适应性, 记录详细测试数据, 确保数据的真实性与准确 性, 为性能评估提供可靠依据。(2)进行严格的结果评 估。将测试所得数据与设计要求和行业标准进行细致对 比分析, 判断设备性能是否达标。若存在偏差, 需深入 分析原因,确定是设备本身问题还是测试误差导致。对 于不达标的性能指标,制定针对性的整改方案,督促相 关人员及时整改,直至性能符合要求。(3)组织专业验收 工作。成立由建设单位、施工单位、监理单位等多方参 与的验收小组, 共同对设备进行全面检查。审查调试记 录、测试报告等资料,现场查看设备运行状况。经各方 确认设备性能满足设计及使用要求后,签署验收文件, 标志着设备正式通过验收,可投入正常使用[3]。

结束语

机电安装中机械设备的安装与调试工作意义重大且 极具挑战性。从精准安装确保设备稳固就位,到细致调 试保障设备性能达标,每一步都凝聚着安装调试人员的 专业与心血。严谨的安装为设备稳定运行筑牢根基,科 学的调试则让设备发挥出最佳效能。这不仅要求技术人 员具备扎实的专业知识和丰富的实践经验,更需秉持严 谨负责的态度。

参考文献

- [1]陶圣文.浅谈机械设备的安装与调试[J].中国设备工程, 2021, (16):117-118.
- [2]白文华.机电安装中机械设备的安装和调试[J].城市建设理论研究(电子版), 2022, (29):64-65.
- [3]刘克军.浅谈机电设备安装过程中的调试问题[J].新课程学习(下), 2021, (04):140-141.