道路桥梁施工中填石路基施工技术的运用探究

李 文

池州建投工程管理有限公司 安徽 池州 247000

摘 要: 道路桥梁施工中,填石路基施工技术通过分层压实、强力夯实等方法,有效提升路基承载力与稳定性。 该技术适用于复杂地形,选用粒径大于37.5mm的石料,严格控制级配与含水率,采用振动、冲击压路机组合压实,结 合边坡码砌与排水设计,确保路基密实度与长期稳定性。通过智能压实监测与绿色填料应用,进一步优化施工效率与 环保性能,保障道路桥梁工程的高质量建设。

关键词: 道路桥梁施工; 填石路基; 施工技术; 运用

引言:在道路桥梁建设中,填石路基技术凭借其适应复杂地质条件、承载力强及稳定性好的优势,已成为山区、软土地区等工程场景的核心解决方案。然而,石料级配不均、压实工艺控制难、排水与边坡防护设计不当等问题,易导致路基沉降、滑塌等质量隐患。本文从填石材料特性分析入手,系统探讨分层填筑、机械选型、边坡加固及特殊地质处理等关键技术,结合质量控制与智能化创新方向,为提升填石路基施工效能提供理论支撑与实践参考。

1 道路桥梁施工中填石路基施工技术基础理论

1.1 填石路基的定义与分类

填石路基是道路桥梁工程中,采用粒径大于37.5mm的石料作为主要填料填筑而成的路基结构,能适应复杂地形与承载需求。(1)按填料类型分类:硬质岩填料抗压强度高、稳定性好,如花岗岩、石灰岩,适用于重载路段;软质岩填料易风化、强度较低,如页岩、泥岩,需做好防护措施;混合填料由硬质岩与软质岩混合而成,需控制两种石料的配比以保证路基性能。(2)按施工方法分类:分层填筑法需将填料分层摊铺、碾压,每层厚度与压实度严格把控,施工质量易保障;倾填法是直接将石料倾倒后简单整理,适用于地形平缓、对路基质量要求不高的路段,施工效率高但质量稳定性较差。

1.2 填石材料的物理力学特性

(1)岩性对压实效果的影响:颗粒级配均匀的石料,颗粒间嵌挤紧密,压实后密度大;级配不均匀的石料易出现空隙,压实效果差。抗压强度高的石料,碾压时不易破碎,能维持路基整体结构稳定;强度低的石料易被压碎,可能导致路基沉降。(2)填料含水率与压实度的关系:含水率过低时,石料颗粒间摩擦力大,难以压实,压实度低;含水率过高,水分填充颗粒间隙,会降低石料间粘结力,同样影响压实度,需控制在最佳含

水率范围以实现最佳压实效果[1]。

1.3 填石路基的力学行为分析

(1)应力分布特征:路基竖向应力随深度增加而减小,侧向约束力不足时,路基易发生侧向位移;路基填筑过程中,若压实不均,易出现局部应力集中,导致沉降变形,影响道路使用。(2)长期稳定性影响因素:水稳定性方面,雨水渗透会软化石料,降低路基强度,长期受水侵蚀易引发路基病害;冻融循环会使路基内水分结冰膨胀、融化收缩,反复作用会破坏路基结构,影响其长期稳定性。

2 道路桥梁施工中填石路基施工关键技术的运用

2.1 施工前准备工作

(1) 现场勘查与地质分析需全面覆盖施工区域,通过钻探、物探等手段探明土层分布、地下水位及软基范围。针对软基路段,若软土厚度较浅(小于3m),可采用换填法,换填级配碎石或砂砾石并分层压实,提高地基承载力;若软土厚度较大,需结合排水设计,设置塑料排水板或砂井,加速软土固结。同时,需规划地表排水系统,避免雨水下渗加剧软基沉降,确保施工前地基满足承载力要求。(2)填料筛选需严格把控石料质量,优先选用硬质岩且粒径不超过压实层厚的2/3。试验阶段需测定填料最大干密度,采用重型击实试验,通过不同含水率下的击实测试,确定最佳含水率对应的最大干密度,作为压实度控制依据;CBR值测定则需模拟路基实际受力,通过贯入试验评估填料承载能力,要求填料CBR值不低于设计规范,若不达标需掺配改良材料,保障路基承载性能。

2.2 分层填筑与压实工艺

(1)分层厚度控制需结合压实设备功率确定,若采用20t振动压路机,分层厚度通常控制在30-40cm;若使用30t以上重型振动压路机,可适当放宽至40-50cm,但需通

过试碾压验证,确保厚度与设备压实能力匹配,避免因厚度过大导致压实不达标,或厚度过小降低施工效率。(2)压实机械选型需对比设备特性:振动压路机通过高频振动使石料颗粒重新排列嵌挤,适用于中细粒料为主的填石路基,压实效率高;冲击压路机依靠冲击能破碎大块石料,增强路基整体密实度,更适合粒径较大、硬度高的填石路段,实际施工需根据填料粒径与路基要求选择,必要时组合使用。(3)压实工艺参数优化需通过试碾压确定:压实遍数一般为6-8遍,前2遍静压稳定石料,后4-6遍振动压实,最后1遍静压收光;行进速度控制在2-4km/h,速度过快易导致压实不均匀,过慢则影响进度;振动频率根据填料特性调整,中细粒料宜采用30-50Hz,大块石料可适当降低至20-30Hz,确保压实效果与施工效率平衡[2]。

2.3 边坡防护与排水技术

(1)边坡稳定性设计需结合路基高度与地质条件:对于高度小于3m的缓坡,可采用植被防护,种植紫穗槐、狗牙根等固土植物,兼顾生态与防护;对于高度3-8m的边坡,宜采用骨架护坡,现浇C20混凝土网格骨架,内部铺设土工格栅,防止边坡溜塌;高度超过8m的边坡,需增设锚杆或锚索,增强边坡抗滑能力。(2)排水系统布置需形成立体网络:路基内部设置盲沟,采用透水土工布包裹碎石,间距10-15m,排出路基内部积水;路基顶面铺设10-15cm厚渗水层,采用级配砂砾石,引导地表水下渗至盲沟;边坡表面设置急流槽,采用混凝土浇筑,间距20-30m,汇集坡面雨水并导入边沟,避免雨水冲刷边坡,同时边沟需与市政排水系统衔接,确保排水通畅^[3]。

2.4 特殊地质条件下的施工技术

(1)软土地基处理需根据软土厚度与承载力要求选择方案:软土厚度1-3m时,采用换填法,挖除软土后回填碎石或灰土,分层压实,压实度不低于96%;软土厚度3-8m时,采用碎石桩复合地基,桩径50-80cm,桩间距1.5-2.0m,梅花形布置,通过碎石桩与软土共同作用提高地基承载力,施工后需检测复合地基承载力,确保满足设计要求。(2)陡坡路段(坡度大于1:5)填筑需重点控制稳定性:先开挖台阶,台阶宽度不小于1.0m,高度0.3-0.5m,形成反向台阶,增强填料与原地面粘结力;同时在边坡外侧设置反压护道,护道宽度2-3m,采用级配碎石填筑,分层压实,通过护道重量平衡路基侧向推力,防止路基滑移。填筑过程中需分层检测边坡坡度与压实度,确保施工质量。

3 道路桥梁施工中填石路基施工质量控制

3.1 质量影响因素分析

(1)材料不均匀性是填石路基质量的基础影响因 素。块石尺寸若差异过大,大块石易形成架空结构,导 致路基内部空隙率增加,后续易出现沉降;级配波动则 会打破颗粒间的嵌挤平衡,级配偏粗时颗粒间咬合度不 足,级配偏细时易受含水率影响出现压实难题,两者均 会降低路基整体稳定性,增加质量隐患。(2)施工工艺 偏差直接决定路基施工质量。分层厚度超限会导致压实 机械的有效压实能量无法传递至层底, 使下层填料密实 度不足,长期使用中易发生压缩沉降;压实不足则可能 因压实遍数不够、机械选型不当等,导致石料颗粒嵌挤 不紧密, 路基承载能力达不到设计要求, 通车后易出现 路面开裂、变形等问题。(3)环境干扰对填石路基质 量的影响具有持续性。降雨会使雨水渗入路基内部, 软 化填料颗粒,降低颗粒间摩擦力与粘结力,若排水不及 时,还可能引发路基内部积水,加剧路基沉降;温度变 化尤其在寒冷地区,会导致路基内水分冻融循环,冻胀 时破坏路基结构,融化后使路基密实度下降,反复作用 会严重影响路基使用寿命。

3.2 质量检测方法与标准

(1) 压实度检测需结合填石路基特性选择合适方 法。灌砂法适用于粒径较小的填石路基,通过称量砂的 体积计算路基压实后的实际密度, 再与最大干密度对比 得出压实度;核子密度仪法则可快速检测,利用放射性 元素测量路基密度,无需破坏路基结构,但需定期校准 设备确保精度,两种方法需配合使用,全面把控压实质 量。(2)沉降观测是监测路基长期稳定性的关键手段。 分层沉降仪可分层测量路基各土层的沉降量,精准定位 沉降发生的深度范围,便于分析沉降原因;水准测量则 通过设置观测点,定期测量路基顶面高程变化,计算累 计沉降量,两种方法结合可实时掌握路基沉降动态,及 时发现异常沉降。(3)填石路基验收需严格遵循规范标 准。压实度方面,根据道路等级要求,高速公路、一级 公路填石路基压实度需≥95%,二级及以下公路可适当 放宽, 但需满足设计要求; 弯沉值需通过弯沉仪检测, 检测结果需符合设计规定,若弯沉值过大,表明路基承 载能力不足,需采取补压等措施整改,直至验收合格[4]。

3.3 常见质量问题与防治措施

(1)路基不均匀沉降是填石路基常见问题,需针对性防治。其主要原因包括填料级配差,颗粒大小搭配不合理,导致压实后空隙率不均,受力时易出现局部压缩;压实不足则使路基整体密实度偏低,承受荷载后产生不均匀变形。针对此类问题,可采用补压措施,对密实度不足区域使用重型振动压路机再次碾压;若沉降已

发生,可采用注浆加固,向路基空隙内注入水泥浆,填充空隙并增强颗粒粘结力,控制沉降发展。(2)边坡滑塌会严重威胁道路通行安全,需及时防控。其主要原因是排水不畅,雨水长期浸泡边坡填料,降低边坡稳定性;护坡失效如骨架护坡开裂、植被防护未成活,无法有效约束边坡土体,导致边坡土体失稳下滑。防治时,首先需增设排水设施,如在边坡增设急流槽、盲沟,加速坡面雨水排出,减少雨水渗入;同时对失效的护坡结构进行修复,若骨架护坡开裂,需重新浇筑混凝土修补,植被防护缺失区域需补植固土能力强的植物,必要时可增设锚杆或锚索,增强边坡抗滑能力,防止滑塌事故发生。

4 道路桥梁施工中填石路基施工技术创新与展望

4.1 施工技术创新方向

(1)智能化压实控制是填石路基施工技术升级的重 要方向,核心在于借助物联网传感器实现实时监测与动 态调控。施工中可在压实机械上安装振动传感器、位置 传感器,同时在路基内部布设应力传感器与密度传感 器,通过物联网技术将设备运行参数(如振动频率、行 进速度)与路基实时状态(如密实度、应力分布)数据 同步至云端平台。技术人员可通过平台实时查看压实效 果, 当监测到局部密实度不足时, 系统能自动提示调整 压实遍数或机械参数,避免传统施工中依赖经验判断的 误差,大幅提升压实质量的稳定性与施工效率。(2)绿 色填料应用是响应环保理念的关键创新, 其中建筑垃圾 再生骨料的资源化利用极具潜力。将建筑拆除产生的混 凝土块、砖石等废弃物经破碎、筛分后,加工成符合填 石路基要求的再生骨料,不仅能减少建筑垃圾填埋带来 的环境压力,还能降低天然石料开采对生态的破坏。实 际应用中需通过试验测定再生骨料的抗压强度、级配等 指标,确保其满足路基填料要求,同时针对再生骨料吸 水性较强的特点,优化含水率控制工艺,实现环保与工 程质量的双重保障。

4.2 行业发展趋势

(1)标准化施工流程推广将成为填石路基施工行业

规范化发展的核心趋势。当前不同项目在填料筛选、压 实参数设定等环节存在差异,导致施工质量参差不齐。 未来行业需结合不同地质条件、道路等级,制定统一的 填石路基施工标准体系,明确从材料检测、施工工艺到 质量验收的全流程规范,例如统一不同压实设备对应的 分层厚度标准、明确再生骨料的应用技术要求等。通过 标准化流程,减少人为因素对施工质量的影响,提升行 业整体施工水平,保障道路桥梁工程的耐久性。(2)极 端气候条件下的技术适应性研究将成为行业重点攻关方 向。随着全球气候变化,高温、严寒、强降雨等极端天 气频发,对填石路基的稳定性提出更高要求。未来需针 对高温地区路基材料热胀变形问题, 研发耐高温的填料 改良技术;针对严寒地区冻融循环对路基的破坏,优化 路基保温结构设计;针对强降雨地区的路基渗水问题, 创新排水系统与防渗材料。通过专项技术研究,提升填 石路基在极端气候下的适应能力,确保道路桥梁工程在 复杂环境下的安全运行。

结束语

道路桥梁施工中,填石路基施工技术的科学运用是保障工程质量与耐久性的关键。通过精准控制石料级配、压实工艺及排水边坡设计,可有效克服复杂地质条件下的施工难题。未来,随着智能化压实监测、绿色填料再生利用等技术的创新,填石路基施工将向高效化、环保化方向迈进。严格遵循标准化流程,强化全生命周期质量控制,方能实现道路桥梁工程的安全、经济与可持续发展。

参考文献

- [1]刘柳.道路桥梁填土路基边坡水毁常见病害防治探讨[J].交通企业管理,2021,36(3):74-75.
- [2]李澈. 道路桥梁施工中填石路基施工技术的运用研究[J]. 运输经理世界,2021,7(11):91-93.
- [3]王勇.浅谈道路工程施工中填石路基施工技术的要求及应用[J].砖瓦,2021,51(11):171-172.
- [4]李育元.寒区道路填石路基施工关键技术与稳定性分析[J].粉煤灰综合利用,2021,35(6):109-110.