工业厂房结构设计中钢结构设计要点分析

高 颖

中国能源建设集团新疆电力设计院有限公司 新疆 乌鲁木齐 830000

摘 要:随着工业4.0时代加速到来,钢结构因其自重轻、跨度大、施工周期短等优势,已成为工业厂房建设的核心结构形式。本文聚焦工业厂房结构设计中的钢结构设计要点。首先阐述钢结构在工业厂房设计中的应用优势,包括强度高、自重轻、施工周期短、环保性能好以及空间布局灵活等方面。接着详细分析工业厂房钢结构设计的要点,涵盖结构体系选择、支撑系统设计、防火与防腐设计、构件与节点设计以及施工便利性设计等内容。最后提出工业厂房钢结构设计的优化建议,如采用BIM技术、注重结构体系优化、加强施工质量控制以及定期维护保养等,旨在为工业厂房钢结构设计提供参考。

关键词:工业厂房;钢结构设计;设计要点;优化建议

引言:在工业建设领域,工业厂房是重要的基础设施,其结构设计直接影响着生产活动的顺利开展与厂房的使用寿命。随着建筑技术的不断发展,钢结构凭借自身诸多优势,在工业厂房设计中得到广泛应用。与传统结构相比,钢结构能更好地满足工业厂房对大跨度、大空间以及快速建造的需求。然而,工业厂房钢结构设计涉及众多复杂因素,从结构体系选择到具体构件设计,再到施工与后期维护,每个环节都至关重要。深入分析钢结构设计要点并提出优化建议,对于提高工业厂房钢结构设计质量、保障厂房安全稳定运行具有重要意义。

1 钢结构在工业厂房设计中的应用优势

1.1 强度高与自重轻

钢结构具有极高的强度,其抗拉、抗压和抗剪能力远超传统砖石和混凝土结构。在工业厂房设计中,这意味着钢结构能够承受更大的荷载,包括设备重量、物料堆放以及风雪等自然荷载,保障厂房的结构安全。同时,钢结构自重轻,可显著降低基础造价。相较于混凝土结构,在相同跨度和荷载条件下,钢结构基础尺寸更小,减少了土方开挖和混凝土浇筑量。而且,较轻的自重有利于厂房的抗震设计,在地震作用下,钢结构能更好地吸收和耗散能量,减轻地震对厂房的破坏,提高厂房的抗震性能。

1.2 施工周期短

钢结构构件通常在工厂预制加工,采用标准化、流水化生产方式,能够保证构件的质量和精度,减少现场施工的工作量和误差。在施工现场,只需进行构件的组装和连接,施工过程简便快捷。而且,钢结构施工不受季节和气候的影响较大,除了极端恶劣天气外,一般均可进行施工。此外,钢结构施工所需的机械设备相对简

单,安装效率高。这些特点使得钢结构工业厂房的施工 周期大幅缩短,能够使企业更快地投入生产,提高经济 效益,满足工业生产快速发展的需求。

1.3 环保性能好

钢结构在材料生产和施工过程中都具有较好的环保性能。钢材是一种可回收利用的材料,在工业厂房拆除后,大部分钢结构构件可以回收再加工,重新用于其他建筑项目,减少了建筑垃圾的产生和对环境的污染。在施工过程中,钢结构安装产生的噪音、粉尘等污染相对较少,与混凝土结构施工相比,不需要大量的模板和支撑材料,降低了资源的消耗。同时,钢结构厂房的保温、隔热性能可通过采用新型保温材料进行优化,提高能源利用效率,减少能源消耗,符合可持续发展的理念。

1.4 空间布局灵活

钢结构工业厂房具有较大的跨度和高度,内部空间 开阔,没有过多的柱子阻挡,为工业生产提供了宽敞、 灵活的空间。企业可以根据自身的生产工艺和生产流 程,自由地划分和布置生产区域、设备摆放位置以及物 料存储空间等。而且,钢结构便于进行改造和扩建,当 企业生产规模扩大或生产工艺发生改变时,可以在原有 钢结构基础上进行加层、扩建或调整内部布局,无需进 行大规模的结构拆除和重建,既节省了时间和成本,又 能满足企业不同发展阶段的需求,提高了厂房的使用价 值和适应性^[1]。

2 工业厂房钢结构设计的要点

2.1 结构体系的选择

(1)框架结构。框架结构由梁和柱通过节点连接而成,能形成较大的空间,满足工业厂房内设备布置和物料运输的需求。其传力路径明确,通过梁将竖向荷载传

至柱,再由柱传至基础。该结构体系灵活性高,便于 厂房内部的改造和扩建。不过,框架结构侧向刚度相对 较小,在水平荷载(如风荷载、地震作用)下,侧移较 大,需合理设计梁柱尺寸和节点,以控制侧移在允许范 围内。(2)框剪结构。框剪结构是在框架结构的基础 上,于部分框架柱之间设置剪力墙。剪力墙具有较大的 抗侧刚度,能有效抵抗水平荷载,减少结构的侧向位 移。在工业厂房中,框剪结构可充分发挥框架结构空间 布置灵活和剪力墙抗侧刚度大的优势,适用于对侧向位 移控制要求较高,且内部空间有一定灵活性的厂房,如 高层工业厂房或对设备精度要求较高、需减少振动影响 的厂房。(3)框架-支撑体系。框架-支撑体系是在框架 结构中设置支撑构件,支撑可承受水平荷载,提高结构 的抗侧刚度和稳定性。与框剪结构相比,支撑构件布置 更灵活,可根据厂房的平面形状和受力特点进行合理布 置。该体系能减少框架梁柱的截面尺寸,节省钢材用量。 在工业厂房中,常用于大跨度、大空间的厂房,如飞机 库、大型仓储厂房等,能有效抵抗风荷载和地震作用。

2.2 支撑系统的设计

(1)支撑系统的作用。它能有效增强厂房的整体刚 度,将各个独立的构件连接成有机整体,共同承受水平 荷载,如风荷载与地震作用,减少结构侧向位移。同 时,支撑系统可分担竖向荷载,降低构件内力,避免局 部构件因受力过大而破坏,还能为结构安装提供稳定支 撑,保障施工过程安全顺利进行,确保厂房结构在使用 期间安全可靠。(2)柱间支撑的设计。柱间支撑一般布 置在厂房两端及有温度伸缩缝区段的中央, 以增强纵向 刚度。设计时,要根据厂房高度、跨度、吊车吨位等因 素确定支撑形式,常见有十字交叉、人字形等。支撑杆 件截面尺寸需通过计算确定, 保证其有足够承载力。此 外,要考虑支撑与柱的连接节点,确保节点传力明确、 构造合理, 使柱间支撑能有效发挥作用, 提高厂房纵向 抗侧能力。(3)屋盖水平支撑的设计。屋盖水平支撑 主要设置在屋架上下弦平面内,可增强屋盖空间刚度, 保证屋架平面外的稳定。设计时,要根据屋架形式、跨 度及荷载情况合理布置支撑位置和间距。支撑杆件官采 用型钢,连接节点要牢固可靠。同时,要注意与垂直支 撑、系杆等协同工作,形成完整的屋盖支撑体系,有效 传递水平荷载, 防止屋架侧向失稳, 确保屋盖结构在各 种工况下的安全性。

2.3 防火与防腐设计

(1)防火设计。防火设计方面,首先要根据厂房的 火灾危险性类别、耐火等级确定合理的防火间距与防火 分区。采用防火涂料是常见做法,通过涂抹防火涂料在钢结构表面,形成隔热保护层,延缓钢材升温速度。也可设置防火板包裹钢结构,其防火隔热性能优良。此外,合理布置消防设施,如自动喷水灭火系统、火灾报警系统等,能在火灾初期及时控制火势,为人员疏散和结构安全争取时间,保障厂房在火灾中的安全性。(2)防腐设计。防腐设计上,要根据厂房所处环境选择合适的防腐措施。对于一般大气环境,可采用油漆涂装,先进行表面除锈处理,再按工艺要求涂刷底漆、中间漆和面漆,形成多层防护。在潮湿、腐蚀性介质多的环境,可选用耐腐蚀性能更好的涂料或采用热镀锌、热喷铝等金属防护方法。同时,设计时要考虑排水、通风等构造措施,减少积水和腐蚀介质的积聚,定期进行防腐维护检查,及时修复破损涂层,延长钢结构使用寿命。

2.4 构件与节点设计

(1) 构件设计。首先,依据厂房的荷载情况,精确 计算构件所承受的轴力、弯矩、剪力等内力, 以此确定 构件的截面尺寸和形状,确保构件有足够的强度和刚 度。对于受压构件,要进行稳定性验算,防止发生失稳 破坏。同时, 要考虑构件的连接方式, 不同的连接对构 件的受力性能有影响。此外,还需兼顾构件的制作和安 装便利性,尽量采用标准化、系列化的构件尺寸,便于 工厂加工和现场拼接,提高施工效率,保证工程质量。 (2)节点设计。节点设计要保证传力明确、可靠,能将 构件的内力顺利传递。根据节点受力特点和构造要求, 选择合适的连接形式,如焊接、螺栓连接或两者结合。 焊接连接强度高,但易产生焊接残余应力和变形;螺栓 连接安装方便,但耗钢量较大。设计时要进行详细的力 学计算,确定连接件的规格和数量。同时,要注意节点 的构造细节,避免应力集中,保证节点在长期使用过程 中不出现疲劳破坏,确保整个钢结构体系的安全稳定。

2.5 施工便利性设计

(1)构件尺寸与形状设计。构件尺寸应符合运输条件,避免因过长、过宽或过重导致运输困难和成本增加。同时,要考虑现场吊装设备的起重能力,合理划分构件分段,便于吊装就位。在形状设计上,尽量采用规则形状,减少异形构件的使用。规则构件易于工厂批量生产,能提高生产效率,保证构件质量。而且,现场拼接时,规则构件的对接和连接更简便,可降低施工难度,缩短施工周期,提高整个钢结构厂房的施工便利性。(2)施工工艺设计。要根据钢结构的特点和施工现场条件,选择合适的施工方法,如高空散装法、分条分块安装法等。合理安排施工顺序,确保各工序之间衔接

紧密,避免出现窝工现象。同时,制定详细的施工流程和质量标准,为施工人员提供明确的指导。在施工过程中,采用先进的施工技术和工具,如自动化焊接设备、高精度测量仪器等,提高施工精度和效率。此外,还要考虑施工安全措施,保障施工人员的人身安全,确保施工顺利进行^[2]。

3 工业厂房钢结构设计的优化建议

3.1 采用BIM技术进行设计优化

BIM技术集成了建筑项目的各种相关信息数据,在工业厂房钢结构设计中应用,能实现设计信息的集成化与可视化。设计阶段,通过三维建模可直观呈现钢结构形态,提前发现设计中的碰撞冲突,如构件间的空间干涉、管线与结构的碰撞等,及时调整优化,减少设计变更。同时,BIM技术能进行结构性能模拟分析,精准计算在不同荷载工况下结构的应力、变形等,辅助设计师优化构件尺寸与布局,提高结构安全性与经济性。此外,借助BIM模型可生成详细的材料清单,为采购与施工提供准确依据,还能实现各专业间的协同设计,提升设计效率与质量,确保设计方案的科学性和合理性。

3.2 注重结构体系的优化

工业厂房钢结构体系优化是提升整体性能的关键。要依据厂房的使用功能、跨度、高度及荷载等条件,合理选择结构体系,如框架结构、框剪结构或框架-支撑体系等,并进行多方案对比分析。优化结构布置,使传力路径清晰直接,减少冗余构件,降低结构自重与用钢量。对关键构件和节点进行细化设计,提高其承载能力与可靠性。同时,考虑结构的抗震、抗风等性能,通过调整结构刚度分布、设置耗能装置等方式,增强结构的抗震抗风能力,确保在各种工况下结构都能安全稳定运行,实现结构体系在安全性、经济性与适用性上的平衡。

3.3 加强施工过程的质量控制

施工过程的质量控制直接影响工业厂房钢结构的质量与安全。要建立严格的质量管理体系,明确各参建方的质量责任。加强对施工材料和构配件的质量检验,确保其符合设计要求与相关标准。施工过程中,严格按照施工工艺和操作规程进行作业,对关键工序和隐蔽工

程进行重点监控,如焊接质量、高强螺栓连接等,保证施工质量。采用先进的检测技术和设备,对结构安装精度、垂直度等进行实时监测,及时发现并纠正偏差。同时,加强施工人员的技术培训和质量意识教育,提高施工队伍的整体素质,确保每一道工序都达到质量标准,打造高质量的工业厂房钢结构工程。

3.4 定期进行维护与保养

定期维护与保养是保障工业厂房钢结构长期安全使用的重要措施。制定详细的维护保养计划,明确维护周期和内容。定期检查钢结构的外观,查看是否有锈蚀、变形、裂缝等缺陷,及时进行除锈、防腐处理和修复。检查连接节点,确保螺栓紧固、焊接无裂纹。对屋盖、墙面等围护结构进行检查,防止渗漏。同时,监测结构的变形情况,与初始设计状态进行对比分析,评估结构的安全性。建立维护保养档案,记录每次维护的时间、内容和处理结果。通过定期维护与保养,及时发现并解决潜在问题,延长钢结构的使用寿命,降低全生命周期成本,确保工业厂房始终处于良好的运行状态^[3]。

结束语

在工业厂房结构设计中,钢结构设计要点众多且至 关重要。从结构体系合理选择,到支撑系统精准设计; 从防火防腐细致考量,到构件节点精心打造,再到施工 便利性全面规划以及后续优化建议的积极采纳,每一个 环节都紧密相连,共同影响着厂房的质量、安全与经济 性。随着工业不断发展,对厂房的要求日益提高。钢结 构设计需紧跟时代步伐,不断创新与完善。只有精准把 握设计要点,才能打造出安全可靠、经济适用、绿色环 保且施工便捷的工业厂房,为工业生产提供坚实保障, 推动工业领域持续高质量发展

参考文献

[1]吴品忠.工业厂房结构设计中钢结构设计的应用研究[J].中国建筑金属结构,2021(1):86-87.

[2]梅神兵,李学芳.工业厂房结构设计中钢结构设计的应用研究[J].江西建材,2021(1):20-22.

[3]刘启.工业厂房结构设计中钢结构设计的应用研究 [J].建材与装饰,2022(3):100-101.