研究路桥施工监理控制要点

张 争 天津国际工程建设监理有限公司 天津 300000

摘 要:本文围绕路桥施工监理控制要点展开。先阐述监理的基础认知、核心原则及角色职责。接着详细论述施工准备、过程、验收阶段的监理控制要点,涵盖资料审查、现场检查、质量安全进度投资控制及分项、竣工验收等。最后说明验收后移交与后续跟踪。旨在为路桥施工监理提供全面、系统的控制方法,保障工程顺利推进与高质量完成。

关键词: 路桥施工; 施工监理; 控制要点; 质量安全; 验收跟踪

引言:路桥工程作为交通基础设施的关键部分,其质量与进度关乎区域发展。施工监理作为保障工程顺利实施的重要环节,贯穿路桥建设全过程。从施工准备到验收交付,监理需把控质量、安全、进度与投资等多方面。深入研究路桥施工监理控制要点,明确各阶段工作重点与方法,对提升监理水平、确保工程优质高效完成具有关键意义。

1 路桥施工监理的基础认知与核心原则

1.1 路桥施工监理的核心内涵

路桥施工监理的定义是依据施工规范与设计文件,对路桥施工全过程进行监督、检查与协调的专业活动。这一活动贯穿施工准备、核心施工到验收的各个阶段,监督环节需核查施工行为是否符合规范要求,检查环节要验证工程实体质量与材料性能是否达标,协调环节则需化解施工中的各类矛盾,确保施工有序推进[1]。其核心目标涵盖多个维度,确保工程质量达标是基础,需通过多环节把控让工程实体强度、平整度等指标满足设计与使用需求;施工安全合规是保障,需监督安全措施落实,避免安全事故威胁人员与工程安全;进度按计划推进是效率要求,需跟踪施工节点,防止进度滞后影响工程交付;投资合理控制是成本要求,需监督资源使用,避免浪费导致投资超支,四者共同构成监理工作的核心目标体系。

1.2 路桥施工监理的核心原则

规范性原则要求监理工作严格遵循施工技术标准与 监理工作流程,避免主观随意性。施工技术标准为监理 提供判断依据,监理需按混凝土强度、路基压实度等 标准核查工程质量;监理工作流程明确原材料验收、分 项工程验收等环节操作规范,按流程开展工作可确保监 理行为专业一致,减少主观判断偏差导致的管控失误。 预防性原则强调提前识别施工潜在风险,通过事前控制 减少问题发生。监理需结合工程地质条件、施工工艺特点,预判软土地基沉降、高空作业坠落等质量安全隐患,提前制定应对措施,在风险发生前采取控制手段,降低问题发生概率,减少事后整改成本。动态性原则要求根据施工实际情况实时优化控制策略。施工中可能遇到地质变化或工艺调整,如原设计地基条件与实际不符、更换设备导致施工参数变化,监理需及时调整监督重点与控制方法,针对地质变化加强地基承载力检测频率,针对工艺调整重新核查施工参数合理性,确保控制策略适配施工实际。协同性原则注重协调施工单位、设计单位等多方,保障施工环节衔接顺畅。多方协作中易出现沟通偏差,如施工单位对设计图纸理解不清、设计变更未及时传递,监理需搭建沟通桥梁,组织多方沟通会议,传递信息、化解分歧,确保施工各环节衔接紧密,避免因协作问题导致施工停滞。

1.3 路桥施工监理的核心角色与职责边界

路桥施工监理的核心角色包括质量把关者、安全监督者、进度协调者、投资把控者。质量把关者需通过材料验收、实体检测等手段,剔除不合格材料,纠正质量问题;安全监督者要巡查安全设施,督促整改安全隐患;进度协调者需跟踪进度计划,协调解决影响进度的问题;投资把控者则需审核工程量与费用,避免不合理支出^[2]。其职责边界需清晰界定,在决策层面,监理可提供专业建议,但不替代建设单位做出投资、设计变更等决策;在执行层面,监理监督施工单位作业行为,但不越位干预施工单位正常的人员调配与设备使用;在监督层面,监理需按规范开展管控,既不缺位导致管控漏洞,也不越权干扰施工单位的合法作业,通过明确职责边界确保监理工作有序、高效开展。

2 施工准备阶段的监理控制要点

2.1 前期资料审查与核对

设计文件审查需核对设计图纸与现场实际条件的适 配性, 重点查看地形地貌、地质参数是否与勘察结果一 致, 需关注软土地基、边坡等特殊区域的设计是否贴 合现场情况,同时检查结构尺寸、材料要求是否清晰合 理,发现模糊或矛盾处及时协调设计单位补充说明,确 保施工依据准确无误。施工方案审查需全面评估施工工 艺、人员设备配置、进度计划的可行性,判断工艺是否 适配工程地质与规模特点,人员数量、设备规格是否能 满足施工强度与技术需求,进度节点是否预留调整空 间。重点审查关键环节技术方案,明确桥梁支座安装的 定位精度控制流程、路基压实的机械选型与遍数参数 等,确保关键环节有可靠技术支撑。资质与人员审查需 核查施工单位资质证书的有效期及等级与工程规模的匹 配度,逐一核对特种作业人员资格证书的有效期与作业 范围,通过提问操作要点、查看过往作业记录等方式验 证人员实际操作能力,确保人员能力与岗位要求匹配, 避免资质或技能不足引发质量安全问题。

2.2 现场准备情况检查

场地准备检查需实地查看施工场地平整程度是否符 合设备进场与作业要求,检查临时设施布置,确认材料 堆场按不同材料类型划分区域, 且针对水泥、钢材等易 受环境影响的材料采取防潮、防雨覆盖措施,核查临时 便道的路面强度、宽度是否满足施工车辆通行,是否设 置限速、警示标识,确保临时设施符合安全规范与施工 需求。设备与材料检查需现场测试进场设备性能,如压 路机需检查压力调节功能与压力表准确性, 钻机需测试 钻孔速度与垂直度控制能力,确保设备正常运行。核对 材料质量证明文件的完整性, 按规范抽样检验钢材的抗 拉强度、混凝土的抗压强度,确认材料达标,杜绝不合 格材料进入施工环节。测量复核需使用全站仪、水准仪 等专业仪器校验施工测量控制点,仔细复核路基边桩的平 面位置与高程、桥梁轴线的直线度与桩位偏差,将复核数 据与设计值逐一比对,发现偏差及时要求施工单位调整测 量方案并重新校准,确保数据准确,为后续施工提供精准 位置基准,避免测量误差导致工程结构位置偏移。

3 施工过程中的核心监理控制要点

3.1 质量控制要点

基础施工质量控制需全程跟踪,路基施工中通过现场检测工具检查压实度与含水率,观察路基表面是否出现裂缝、松散,避免后续使用中出现翻浆、沉降;桥梁基础施工中,核对钢筋笼的钢筋规格、间距与安装位置精度,浇筑混凝土时监督振捣顺序与时间,确保浇筑密实,防止出现断桩、露筋等影响基础承载的问题^[3]。主体

结构施工质量控制需聚焦关键指标,桥梁上部结构施工中,按批次检测混凝土试块强度,监测预应力张拉时的应力变化与伸长量,判断预应力损失是否在合理范围;路面施工中,用平整度仪检测基层平整度,通过钻芯取样检查面层厚度,结合压实度检测数据,确保路面具备足够承载能力与抗滑性能,满足通行需求。细节质量控制需关注易忽略部位,检查路面伸缩缝的填充材料与安装平整度,避免雨水渗入损坏基层;核查桥梁接缝的密封性能与位移量,确保结构变形时接缝正常工作;监督钢结构涂装的涂层厚度与均匀度,测量钢筋保护层厚度,防止因防腐防锈不到位或保护层不足,影响工程整体耐久性。

3.2 安全控制要点

现场安全设施检查需覆盖全施工区域,查看高空作业防护栏的高度、固定牢固度,检查基坑临边防护的设置范围与警示标识,确认消防器材的类型、数量与有效期,核查应急通道的宽度与畅通情况,确保安全设施规范齐全且可正常使用。同时检查临时用电线路的绝缘层完整性与敷设方式,避免线路破损引发触电风险。施工操作安全监督需实时巡查,观察施工人员高空作业时是否正确系挂安全带,检查电气设备的接地线路连接是否规范,发现酒后施工、违规吊装等违章作业行为及时制止,要求施工单位对违规人员进行安全教育,强化规范操作意识。风险动态监控需聚焦高风险环节,定期检查桥梁挂篮施工的承重结构稳定性、锚固系统可靠性,监测高填方路基的沉降速率与边坡稳定性,核查施工单位制定的应急预案是否涵盖各类风险场景,询问应急演练的开展频率与效果,确保风险始终处于可控状态。

3.3 进度控制要点

进度计划跟踪需固定周期开展,每周或每月对比实际施工进度与计划进度,梳理进度偏差情况,深入分析偏差原因,如是否因材料供应延迟导致停工,或设备故障影响作业效率,明确偏差责任方与解决方向。关键节点管控需提前介入,针对桥梁合龙、路基完工等影响整体进度的关键节点,提前与施工单位沟通资源需求,协调材料供应、设备调配与人员配置,确保节点施工所需资源及时到位,保障节点按时完成。进度调整协调需快速响应,当进度出现偏差时,协助施工单位分析调整方案的可行性,如评估增加作业班组是否能提升效率,调整施工顺序是否会影响质量安全,确定优化方案后跟踪落实情况,避免偏差进一步扩大。同时协调设计、材料供应等关联方,减少外部因素对进度的干扰。

3.4 投资控制要点

工程量计量控制需严格按规范执行,根据施工进度与验收记录,准确计量已完成的合格工程量,核对计量范围与计算方法,避免重复计量或因尺寸偏差导致的计量误差,确保计量结果真实反映工程实际完成情况。变更与签证控制需严把审核关,审查工程变更的技术必要性与经济合理性,核对变更部分的费用计算依据与标准,对非必要变更提出优化建议;审核现场签证的事件真实性、内容完整性与签字合规性,杜绝虚假签证或不合理签证增加投资。成本动态监控需关注市场变化,跟踪主要材料的价格波动趋势,了解设备租赁费用的调整情况,分析价格变化对工程投资的影响程度,及时向建设单位提出成本控制建议,如调整采购时机或优化设备使用方案,降低成本超支风险;同时核查施工单位是否存在材料浪费、设备闲置等增加成本的情况,督促施工单位优化资源使用,进一步压缩不必要的成本支出。

4 验收阶段的监理控制要点

4.1 分项工程验收控制

验收资料审查需逐份核对分项工程验收资料,检查施工记录是否完整记录各环节操作流程与参数,检测报告是否包含明确的检测方法、数据与结论,确保资料无缺漏、无篡改,与实际施工工序、质量状态完全一致,避免因资料失真影响验收判断^[4]。现场实体检测需按规范选取代表性检测点,使用专业设备对分项工程实体进行抽样检测,如路基验收中检测弯沉值判断承载能力,桥梁验收中测量结构裂缝宽度评估结构安全性,将检测结果与验收标准对比,验证工程质量是否达到设计与规范要求。问题整改监督需对验收中发现的问题分类记录,如路面平整度超标需明确超标的具体区域与偏差值,混凝土表面蜂窝麻面需标注位置与面积,督促施工单位针对不同问题制定针对性整改方案,整改过程中跟踪检查整改措施落实情况,整改完成后重新检测验收,确保问题彻底解决。

4.2 竣工验收控制

整体质量评估需汇总各分项工程验收结果,分析分项工程质量是否存在关联性问题,如路基沉降是否影响路面平整度、桥梁基础偏差是否波及上部结构稳定性,综合判断工程整体质量是否符合设计要求与验收标准,

形成全面的质量评估意见。安全与功能检测需聚焦工程核心性能,检查桥梁抗震构造是否符合设计要求、路基边坡防护是否稳固,通过荷载试验验证桥梁承载能力,通过通行测试评估路面通行效率与舒适度,确保工程安全性能可靠、使用功能达标,满足后续运营需求。竣工资料审核需全面核查竣工图纸是否准确反映工程实际施工情况,与设计图纸的变更部分是否标注清晰,结算资料中的工程量计算、费用汇总是否合规,确保整套竣工资料完整、规范、准确,可为后续工程维护、检修提供清晰依据。

4.3 验收后移交与后续跟踪

移交过程监督需协助梳理工程移交清单,明确移交的工程实体范围、配套设施及相关资料,监督建设单位与接收单位办理移交手续,核对签字确认环节是否完整,清晰界定各方在移交后对工程的管理责任与维护义务,避免后续责任纠纷。缺陷责任期跟踪需制定定期巡查计划,按周期检查工程使用状况,重点关注易出现缺陷的部位,如路面是否出现新的裂缝、桥梁支座是否存在渗漏或位移,发现缺陷后及时通知施工单位,督促在规定时限内组织维修,维修完成后现场核验维修质量,确保工程在缺陷责任期内始终保持良好状态。

结束语

路桥施工监理工作复杂且责任重大,贯穿工程全生命周期。通过对施工准备、过程及验收各阶段控制要点的系统把控,可有效保障工程质量、安全、进度与投资目标的实现。未来,随着路桥工程规模扩大与技术升级,监理工作需不断创新与完善,以适应新形势需求,为路桥建设事业的高质量发展提供坚实支撑。

参考文献

[1]叶萌萌.路桥施工监理中混凝土质量全程监控要点与实践探究[J].越野世界.2024,19(22):152-153.

- [2]夏文彬.路桥工程施工安全监理面临的问题与化解措施[J].中州建设,2025(8):95-96.
- [3]胡奕彬.路桥工程监理中施工质量问题的处理分析 [J].建筑•建材•装饰,2023(5):151-153.

[4]李仁魁.试析路桥钻孔灌注桩施工的监理方法[J].黑 龙江交通科技,2023,46(9):171-173.