公路路基路面设计中软基处理技术分析

苗朝

山西晋城公路规划勘察设计有限公司 山西 晋城 048000

摘 要:随着我国公路交通事业的飞速发展,公路建设规模不断扩大,路线穿越的地质条件也日益复杂。本文聚焦公路路基路面设计中的软基处理技术。先对软土地基特性展开分析,涵盖软土定义分类、物理力学性质及变形机理。接着详细阐述多种软基处理技术方法,包括换填法、排水固结法等。最后探讨软基处理技术的发展趋势,涉及新材料应用、新技术研发与多技术联合应用。旨在为公路路基路面软基处理提供全面且实用的参考,助力提升公路建设质量与安全性。

关键词: 公路路基; 路面设计; 软基处理; 技术方法; 发展趋势

引言:在公路建设进程中,软土地基问题一直是影响路基路面质量与稳定性的关键因素。软土地基具有高压缩性、低强度等特性,若处理不当,易导致公路出现沉降、变形等病害,严重影响公路的使用寿命与行车安全。公路路基路面设计作为公路建设的重要环节,科学合理的软基处理技术至关重要。因此,深入分析软土地基特性,研究有效的软基处理技术方法,并把握其发展趋势,对于提高公路建设水平、保障公路安全畅通具有重大意义。

1 软土地基特性分析

1.1 软土的定义与分类

软土一般指天然含水量高、孔隙比大、压缩性高、 抗剪强度低的细粒土,包括淤泥、淤泥质土、泥炭、泥 炭质土等。其形成多与静水或缓慢流水环境相关,如 滨海、湖沼、河滩等地。按成因,软土可分为海相沉积 软土、湖相沉积软土、河相沉积软土等;依据有机质含 量,又可分为无机软土、有机质软土和高有机质软土 (泥炭)。不同类型软土在工程性质上存在差异,准确 分类有助于针对性地采取处理措施,保障工程建设安全 与稳定。

1.2 软土的物理力学性质

软土物理性质显著,天然含水量常超过液限,孔隙比大,一般大于1.0,导致土体疏松多孔。其密度小,干密度常低于1.5g/cm³。力学性质方面,压缩性极高,在荷载作用下会产生较大沉降,且沉降稳定时间长。抗剪强度低,内摩擦角和黏聚力较小,使得软土在受力时易发生剪切破坏。此外,软土的渗透性弱,固结过程缓慢,进一步增加了地基处理的难度。这些特性使得软土地基上的工程建设面临诸多挑战,需采取有效措施改善其工程性能。

1.3 软土地基的变形机理

软土地基变形主要由主固结沉降和次固结沉降构成。主固结沉降源于土体中孔隙水被排出,土颗粒重新排列,有效应力增加,导致土体压缩。在加载初期,孔隙水压力迅速上升,随后逐渐消散,土体体积减小,产生明显沉降。次固结沉降则发生在主固结完成后,是土体骨架在持续荷载下发生的蠕变变形,与土颗粒间的接触应力和结合水膜的变化有关。此外,施工过程中的加载方式、加载速率等也会影响软土地基的变形,不合理的施工可能导致地基变形过大,危及建筑物安全^[1]。

2 公路路基路面设计中软基处理技术方法

2.1 换填法

换填法是公路路基路面设计中处理软基的经典且广 泛应用的技术方法, 其核心原理是通过挖除软弱土层, 换填强度较高、压缩性较低且性能稳定的材料,以改善 地基的承载能力与稳定性,减少后期沉降。(1)该方法 适用范围广泛,尤其适用于浅层软土地基(一般深度小 于3米),如淤泥质土、杂填土或素填土等软弱土层分布 区域。施工时,首先需精确划定换填范围与深度,彻底 清除软土至设计标高,避免残留软弱层影响处理效果。 换填材料的选择至关重要,常用材料包括级配良好的砂 砾石、碎石、矿渣等粗粒土,这类材料透水性强、压缩 性低,能有效加速排水固结;也可采用灰土、水泥土等 无机结合料稳定土,通过化学胶结作用提升强度。(2) 施工过程中需严格控制分层压实厚度与压实度, 每层压 实厚度通常不超过30厘米,采用振动压路机或冲击压路 机进行碾压,确保换填层密实度达到设计要求。换填法 的优势在于施工工艺简单、工期短、质量可控, 且能有 效处理浅层不均匀沉降问题。然而,其局限性在于处理 深度有限,对于深层软土需结合其他技术;同时,换填 材料需就地取材或远运,可能增加工程成本。

2.2 排水固结法

排水固结法是公路路基路面软基处理中针对饱和软 黏土的有效技术, 其核心原理是通过在软基中设置垂直 排水通道(如砂井、塑料排水板)和水平排水层(如砂 垫层),结合堆载预压或真空预压,加速孔隙水排出, 促使土体固结,从而提高地基强度、减少工后沉降。 (1)该方法适用于处理厚度较大、渗透性差但压缩性高 的软土地基,尤其适用于工期要求较宽松的工程场景。 其作用机理分为两个阶段:加载阶段,通过堆载或真空 负压使土体中孔隙水压力升高,形成超静水压力;排水 阶段,超静水压力逐渐消散,孔隙水沿排水通道排出, 土体有效应力增加,体积压缩,强度随之提升。(2)施 工时, 需先铺设水平砂垫层作为排水基底, 再垂直打入 排水板或设置砂井,形成三维排水体系。堆载预压通过 分级加载控制加载速率,避免土体破坏;真空预压则通 过密封膜与抽真空装置形成负压环境,加速排水。该方 法的优势在于可显著减少地基沉降,提高承载力,且设 备简单、成本较低。但其局限性在于工期较长(通常需 数月),且对深层软土处理效果受排水通道深度限制。 未来,随着新型排水材料(如高渗透性纤维排水体)和 智能监测技术的应用,排水固结法的效率与精度将进一 步提升。

2.3 强夯法

强夯法,又称动力固结法,是公路路基路面软基处 理中一种高效且应用广泛的技术。其基本原理是通过重 锤(质量通常为10-40吨)从高处(落距可达10-30米)自 由落下,对地基土施加巨大的瞬时冲击能,使土体产生 强烈的振动和挤压,从而破坏土体原有结构,形成密实 的夯坑和夯击影响区。(1)在冲击作用下,土体中的孔 隙水被迅速挤出, 土颗粒重新排列, 孔隙比减小, 密实 度增加, 地基承载力显著提高, 同时压缩性降低, 能有 效减少工后沉降。强夯法适用于处理碎石土、砂土、低 饱和度的粉土与黏性土、湿陷性黄土、素填土和杂填土 等地基,尤其对非饱和软土的处理效果较为突出。(2) 施工时, 需根据地基土的性质、工程要求和现场条件, 合理确定夯击能、夯击次数、夯击间距和夯击遍数等参 数。一般先进行试夯,根据试夯结果调整施工参数。强 夯法的优势在于设备简单、施工速度快、工期短、成本 较低, 且加固效果显著。然而, 它也存在一定局限性, 如施工时会产生较大的振动和噪声,对周围环境有一定 影响;对于高饱和度的软黏土,单纯强夯效果可能不理 想,需结合其他方法进行处理。随着技术发展,强夯与 其他技术联合应用将成为趋势, 以提升软基处理质量。

2.4 碎石桩处理法

碎石桩处理法是一种广泛应用于地基加固的工程技 术,通过在软弱地基中形成密实的碎石桩体,与周围土 体共同构成复合地基,显著提高地基的承载能力,减 少沉降。(1)该方法施工时,先利用振动、冲击或水 冲等方式在土中成孔,随后向孔内分层填入碎石等硬质 材料,并借助振动力或冲击力将其挤密,最终形成具有 一定直径和密实度的碎石桩。这些碎石桩如同地基中的 "骨骼",能有效分散上部结构传来的荷载,将其传递 到更深、更坚实的土层。(2)碎石桩处理法具有诸多 优势。其一,施工设备相对简单,操作便捷,能适应不 同的施工环境和场地条件。其二,施工速度快,工期较 短,能有效缩短工程建设周期。其三,造价相对较低, 具有较好的经济性。此外,该技术对周围环境的影响较 小,符合绿色施工理念。(3)在实际工程中,碎石桩处 理法适用于处理饱和软黏土、粉土、素填土和杂填土等 地基。不过,施工前需进行详细的现场勘察和试验,确 定合理的桩径、桩距、桩长等参数,以确保处理效果。 同时,施工过程中要严格控制填料质量和施工工艺,保 证碎石桩的质量和稳定性,从而为建筑物提供可靠的地 基支撑。

2.5 加筋处理法

加筋处理法是公路路基路面软基处理中一项实用且 高效的技术,通过在软基中铺设高强度、高模量的加筋 材料,增强土体内部的连接与稳定性,从而提升地基承 载能力,减少不均匀沉降。(1)其作用原理基于加筋材 料与土体之间的摩擦和嵌锁作用。当土体受到外力作用 产生变形趋势时, 加筋材料会通过其抗拉性能约束土体 的侧向变形, 使土体中的应力得到重新分布, 将部分拉 应力转化为加筋材料的拉应力,进而提高土体的整体强 度和抗剪能力。(2)常用的加筋材料包括土工格栅、土 工带、土工织物等。土工格栅具有较高的抗拉强度和较 好的蠕变性能,能有效地分散应力;土工带则具有施工 方便、价格低廉的优点; 土工织物可以过滤和排水, 同 时增强土体的稳定性。在施工过程中,加筋材料的铺设 方式、层数和间距需根据地基土的性质、工程要求以及 加筋材料的特性进行合理设计。一般要将加筋材料平整 地铺设在处理层面上,并保证其与土体充分接触。(3) 加筋处理法适用于各种软土地基, 尤其对提高路堤的稳 定性效果显著。它不仅能有效减少地基沉降,还能防止 路堤滑坡等病害的发生,且施工工艺相对简单,对环境 影响较小,在公路工程软基处理中得到了广泛应用[2]。

3 公路路基路面设计中软基处理技术的发展趋势

3.1 新材料的应用

随着材料科学的不断突破,公路路基路面软基处理领域正迎来新型材料的广泛应用。高性能合成材料方面,聚酯纤维、聚丙烯纤维及玄武岩纤维等土工格栅与格室,凭借其高模量、耐腐蚀特性,可有效增强土体抗剪强度,分散路基应力,减少不均匀沉降。纳米材料如纳米硅酸盐、纳米碳管通过微观结构改性,显著提升软土的密实度与强度,同时改善其耐久性。生态环保材料中,植物纤维与可降解聚合物复合材料,在加固土体的同时减少施工对环境的扰动,符合绿色建设理念。轻质泡沫土技术通过发泡剂制备低容重材料,降低路堤自重,减少地基附加应力,适用于山区或高填方路段。此外,生物基固化剂利用微生物矿化作用,将软土转化为类岩石结构,不仅强化地基,且碳排放量较传统化学固化剂大幅降低。

3.2 新技术的研发与应用

公路路基路面软基处理领域,新技术的研发与应用 正推动行业向智能化、绿色化与高效化迈进。在智能监 测方面,分布式光纤传感技术可沿软基全线埋设,实 时捕捉沉降、应力等参数,结合大数据分析实现动态预 警,为施工参数调整提供精准依据;无人机倾斜摄影结 合三维激光扫描,能快速构建软基地形模型,辅助设计 优化与质量验收。绿色施工技术中,微生物诱导碳酸钙 沉淀(MICP)技术通过注入特定菌液与胶结液,利用 微生物代谢产物固化软土,减少化学材料使用,降低碳 排放;低温等离子体技术利用高能粒子改性软土表面, 增强颗粒间黏结力,实现无污染加固。高效施工装备方 面,多功能强夯机集成智能夯击控制系统,可根据土质 自动调整夯击能;振动沉管碎石桩机配备自动定位与深 度监测功能,提升成桩精度与效率。

3.3 多技术联合应用

公路路基路面软基处理中,单一技术常面临局限性,而多技术联合应用正成为提升处理效果的核心趋势。物理加固与化学改良的协同是重要方向,例如将强夯法与化学注浆结合,强夯通过冲击能压实表层软土,化学注浆则渗透至深层,填充孔隙并固化土体,形成"表层密实+深层稳固"的复合加固体系,显著提升地基整体承载力。排水固结与加筋技术的联动同样关键,排

水板加速孔隙水排出,缩短固结时间,同时铺设土工格棚增强土体抗剪能力,防止固结过程中土体侧向变形,适用于高压缩性软土路段。此外,生物技术与机械施工的融合展现出绿色潜力,微生物矿化技术固化软土后,结合振动压路机进一步密实,既减少化学材料使用,又提升施工效率。

3.4 绿色施工与环保监测

公路路基路面软基处理中,绿色施工与环保监测已成为技术发展的重要方向,旨在降低施工对环境的负面影响,实现资源高效利用与生态保护。绿色施工强调材料循环利用与工艺优化,例如采用可降解土工材料替代传统化学固化剂,减少土壤污染;利用工业废料(如粉煤灰、矿渣)作为填料,降低天然资源消耗;推广低扰动施工机械,减少噪音与扬尘排放。环保监测技术则通过物联网传感器实时采集施工区空气质量、水质、土壤污染等数据,结合大数据分析评估环境风险。例如,部署颗粒物监测仪与噪声传感器,动态调控施工时段与设备参数,确保符合环保标准;利用水质传感器监测地下水变化,防止化学物质渗漏污染。此外,生态修复技术如植被恢复、微生物修复等被整合至施工流程,修复受损生态系统^[3]。

结束语

软基处理技术作为公路路基路面设计的关键环节, 其发展深刻影响着工程的质量、安全与可持续性。从新 材料的应用到新技术的突破,从多技术联合到绿色施 工与环保监测的深度融合,行业正朝着高效、智能、生 态的方向迈进。未来,随着科技的不断进步,软基处理 技术将更加注重精准化、低碳化与全生命周期管理,以 应对复杂地质条件与环保要求的双重挑战。唯有持续创 新、强化协同,方能筑牢公路工程的"隐形基石",为 交通基础设施的韧性发展提供坚实支撑。

参考文献

[1]董凤珍.公路路基路面设计中软基的处理技术分析 [J].门窗,2021(24):153.

[2]高苗苗.浅谈公路路基路面设计中的软基处理[J].四 川水泥.2021(08):55.

[3]李成钢.浅谈公路路基路面设计中软基的处理技术 [J].四川水泥,2022(10):117.