建筑土木工程中的智能施工技术及其应用

朱 鑫 宁夏中宁工业园区管理委员会 宁夏 中卫 755103

摘 要:随着科技革命与产业变革加速推进,建筑土木工程领域正经历智能化的深刻变革。本文聚焦建筑土木工程中的智能施工技术及其应用。首先概述主流智能施工技术,构建包含BIM、物联网、人工智能等技术的体系。接着详细阐述智能施工技术在设计、施工、监测与维护阶段的具体应用。最后探讨其发展趋势,涵盖数字孪生与全生命周期管理、5G与边缘计算融合、绿色建造与碳中和目标等方面,旨在为建筑土木工程领域智能施工技术的推广与应用提供参考。

关键词:建筑土木工程;智能施工技术;发展趋势

引言:在科技飞速发展的当下,建筑土木工程领域 正经历着深刻变革。传统施工方式面临效率、质量、安 全等多方面的挑战,难以满足日益复杂的工程建设需 求。智能施工技术应运而生,它融合了多种先进技术, 为建筑土木工程带来全新解决方案。智能施工技术不仅 能提高施工效率、保证工程质量,还能降低安全风险、 减少资源浪费。深入研究智能施工技术及其应用,对于 推动建筑土木工程行业向智能化、高效化、绿色化方向 发展具有至关重要的意义。

1 建筑土木工程中主流智能施工技术概述

建筑土木工程中,主流智能施工技术正推动行业向高效化、绿色化、智能化方向转型。BIM技术作为核心,通过三维建模与数据集成,实现设计、施工、运维全生命周期管理,其碰撞检测功能可提前发现设计冲突,减少施工变更,缩短工期15%-20%。物联网技术通过传感器、摄像头等设备实时采集施工数据,结合云计算平台实现设备状态、环境参数的远程监控,如塔吊防碰撞系统可降低事故率30%,扬尘监测联动喷淋系统保障绿色施工。人工智能技术依托机器学习与计算机视觉,实现施工风险预测与违规行为识别,例如AI视频监控可自动识别未戴安全帽等行为,高支模传感器预警结构变形。机器人技术则替代人工完成高风险、高精度作业,如智能焊接机器人提升桥梁焊接质量,3D扫描技术辅助混凝土结构精度控制[1]。

2 建筑土木工程中主流智能施工技术体系

2.1 BIM技术

在建筑土木工程的主流智能施工技术体系中,BIM (建筑信息模型)技术占据着关键地位。(1)BIM技术实现了信息的全面集成。它以三维数字技术为基础,将建筑物的几何信息、物理信息、功能信息等众多要素

整合在一个统一的模型中。这种集成打破了传统二维图 纸信息分散的局限, 使各专业人员能够在一个共享的平 台上获取和交流信息,极大提高了沟通效率,减少了因 信息不畅导致的误解和错误。(2)BIM技术为协同工作 提供了有力支持。在建筑土木工程项目中, 涉及建筑、 结构、给排水、电气等多个专业。BIM技术允许不同专 业的团队在同一模型上进行协同设计和施工模拟,提前 发现各专业之间的冲突和矛盾,如管线碰撞等问题,并 及时进行调整和优化,从而避免了施工过程中的返工和 延误,保障了项目的顺利进行。(3)BIM技术贯穿于建 筑土木工程的全生命周期。从项目前期的规划、设计, 到施工阶段的进度管理、成本控制, 再到后期的运维管 理, BIM模型都能持续发挥作用。它为项目各阶段提供了 准确的数据支持,帮助决策者做出科学合理的决策,提 高项目的整体效益和管理水平,是推动建筑土木工程智 能化发展的重要技术力量。

2.2 物联网技术

物联网技术作为建筑土木工程领域的关键智能技术,通过传感器、RFID标签、智能设备等装置,将工程现场的各类物品与互联网连接,实现信息的实时交换与智能化管理。(1)物联网技术通过感知层设备实现工程要素的精准监测。传感器网络可实时采集设备运行状态、环境参数、材料库存等数据,如塔吊的振动频率、混凝土的温度湿度等,为质量管控提供量化依据。RFID技术则通过电子标签实现材料从采购到使用的全流程追溯,避免库存积压或短缺。(2)网络层技术保障数据的高效传输与处理。依托5G、Wi-Fi6等无线通信技术,结合边缘计算节点,物联网系统可实现低延迟、高可靠性的数据传输,支持实时监控与预警功能。例如,通过分析设备能耗数据,系统可自动优化施工机械的运行策

略,降低能源消耗。(3)应用层技术推动工程管理的智能化转型。基于物联网数据,BIM模型可动态更新工程进度,AI算法能预测施工风险,而数字孪生技术则通过虚拟仿真优化施工方案。此外,物联网与区块链的结合可实现工程供应链的透明化管理,提升协同效率。

2.3 人工智能技术

人工智能技术在建筑土木工程领域的应用,正推动 行业从经验驱动向数据驱动的智能化模式转变。其核心 在于通过机器学习、深度学习、计算机视觉等算法,对 海量工程数据进行挖掘与分析,为决策提供科学依据。 (1)人工智能技术赋能工程设计的优化与创新。基于 生成式设计算法,系统可自动生成多种结构方案,并通 过性能模拟与成本评估,快速筛选出最优解。同时,自 然语言处理技术可解析规范条文与历史案例,辅助设计 师完成合规性审查与知识复用,提升设计效率与质量。 (2)施工过程中的风险管控与资源调度因人工智能而更 精准。通过分析设备运行数据、环境参数及人员行为模 式,AI模型可预测塔吊倾覆、模板坍塌等潜在风险,并 提前触发预警机制。此外,强化学习算法能动态优化施 工机械的作业路径与能耗策略,减少资源浪费与工期延 误。(3)运维阶段的智能诊断与预测性维护依赖人工智 能的深度分析能力。结合传感器实时采集的结构振动、 应力应变等数据, AI系统可识别早期损伤特征, 并通过 迁移学习技术适应不同工程场景的损伤模式。这种主动 式维护策略显著延长了建筑设施的使用寿命,降低了全 生命周期成本。

2.4 装配式智能施工技术

装配式智能施工技术是建筑工业化与智能化深度融 合的产物,通过集成数字化设计、自动化生产、智能化 安装及信息化管理, 实现建筑构件的高效制造与精准装 配。(1)该技术依托BIM(建筑信息模型)技术实现全 流程数字化协同。设计阶段,BIM模型可进行三维可视化 模拟与碰撞检测,优化构件拆分与节点设计,减少现场 施工冲突;生产阶段,BIM数据直接驱动自动化生产线, 确保构件尺寸精度控制在±2mm以内,提升生产效率与质 量稳定性。(2)自动化生产设备与物联网技术的结合, 构建了智能工厂体系。混凝土搅拌、钢筋加工、模具组 装等工序由机器人与数控设备协同完成, 通过传感器实 时采集温度、湿度、应力等参数, 动态调整工艺参数, 确保构件性能达标。(3)智能化安装技术革新了传统施 工模式。激光定位、AR(增强现实)导航与智能吊装系 统协同作业,通过实时监测构件空间位置与垂直度,自 动调整安装姿态,误差控制在3mm/m以内。此外,基于 AI算法的施工模拟系统可预判装配风险,优化施工顺序与资源调配,显著缩短工期并降低安全风险。

2.5 无人机与施工机器人技术

无人机与施工机器人技术作为建筑土木工程领域的 智能化工具,通过空地协同作业模式,重构了传统施工 流程中的数据采集、高危作业与精细操作环节,显著提 升了工程效率与安全性。(1)无人机技术构建了立体化 工程监测体系。搭载多光谱相机、激光雷达与热成像仪 的无人机可快速完成地形测绘、三维建模与进度跟踪, 其单日测绘面积可达传统方法的5-10倍,且数据精度满足 施工级要求。通过实时传输高清影像与点云数据,无人机 为项目管理提供了动态决策依据, 尤其适用于复杂地形或 大型项目的全貌把控。(2)施工机器人技术实现了高危 与重复作业的自动化替代。地面机器人可完成混凝土振 捣、地坪打磨、焊接等高粉尘或高强度任务,通过力控 传感器与视觉导航系统,确保操作精度达到±0.5mm级。 高空作业机器人则借助磁吸轨道或缆索系统, 在钢结构 安装、幕墙清洗等场景中替代人工,消除坠落风险的同 时,将作业效率提升3倍以上。(3)两者协同形成"感 知-决策-执行"闭环。无人机采集的现场数据经AI分析 后,可自动生成施工指令并传输至机器人控制系统,实现 从环境感知到任务执行的智能联动。这种空地一体化作业 模式不仅减少了人工干预,还通过持续数据反馈优化施工 参数,推动工程建设向精准化、无人化方向发展[2]。

3 智能施工技术在建筑土木工程中的具体应用

3.1 设计阶段的应用

在设计阶段,智能施工技术以数字化与智能化为核心驱动。BIM技术构建三维可视化模型,集成建筑、结构、机电等多专业数据,通过碰撞检测功能自动识别管线冲突、空间碰撞等问题,提前优化设计方案,减少后期施工变更。参数化设计工具结合算法生成多种结构方案,设计师可快速调整参数(如跨度、高度),通过性能模拟评估结构安全性与经济性,实现设计方案的动态优化。人工智能辅助设计系统可分析历史项目数据与规范要求,自动生成合规性设计方案,设计师通过交互式调整提升设计创新性。同时,虚拟现实(VR)与增强现实(AR)技术提供沉浸式设计评审环境,各专业人员可在虚拟场景中协同检查空间合理性、管线排布等细节,确保设计方案的可行性与协调性,显著缩短设计周期并提高设计质量。

3.2 施工阶段的应用

施工阶段中,智能施工技术聚焦于精准化与自动化 管控。物联网设备(如传感器、RFID标签)实时采集 施工机械位置、材料库存、环境参数(温湿度、风速)等数据,通过边缘计算节点快速处理,动态调整施工计划与资源分配。施工机器人执行高精度作业,如混凝土3D打印机器人根据预设路径分层浇筑,减少人工误差;钢筋绑扎机器人通过视觉识别系统精准定位钢筋节点,提升施工效率。无人机搭载高清摄像头与激光雷达,进行高空巡检与进度监测,其多光谱成像技术可识别材料缺陷或结构偏差。人工智能算法分析施工数据,预测工期延误风险、设备故障概率,并优化施工顺序与机械调度。数字孪生技术构建虚拟施工场景,模拟工序冲突与安全风险,指导现场人员调整作业策略,实现施工过程的智能化管控。

3.3 监测与维护阶段的应用

监测与维护阶段,智能施工技术实现全生命周期健康管理。传感器网络(如应变计、加速度计、温湿度传感器)持续采集结构应力、振动、温度等数据,结合机器学习模型分析数据变化趋势,识别早期损伤特征(如裂缝扩展、钢筋锈蚀),预测结构剩余使用寿命。物联网平台整合多源监测数据,生成结构健康报告并触发预警机制,当监测值超过阈值时自动通知运维人员。无人机搭载热成像仪与激光雷达,定期巡检建筑外立面、桥梁下部结构等隐蔽部位,快速定位渗漏、剥落等缺陷。区块链技术确保监测数据的不可篡改性与可追溯性,为运维决策提供可信依据。同时,AI驱动的维护系统根据损伤程度自动生成修复方案(如局部加固、表面处理),优化维修资源调度与工期安排。智能技术使建筑从被动维护转向主动预防,延长使用寿命并降低全生命周期成本。

4 建筑土木工程中的智能施工技术的发展趋势

4.1 数字孪生与全生命周期管理

数字孪生技术通过构建物理建筑的虚拟镜像,实现从设计、施工到运维的全生命周期数据贯通。其核心在于实时采集结构应力、环境参数等动态数据,结合AI算法模拟建筑性能演变,提前识别损伤风险并优化维护策略。未来,数字孪生将与BIM、CIM(城市信息模型)深度融合,形成覆盖单体建筑至城市片区的多尺度孪生体

系。通过物联网设备持续反馈运营数据,孪生模型可动态调整能耗管理、空间利用等方案,推动建筑业从"被动维护"转向"主动预防",显著降低全生命周期成本并提升资源利用效率。

4.2 5G与边缘计算融合

5G与边缘计算的融合为土木工程提供低时延、高带宽的实时数据处理能力。5G网络支持施工机械、传感器等设备的大规模连接,而边缘计算节点在现场完成数据预处理与初步决策,减少云端传输延迟。例如,智能塔吊通过5G传输高清视频,边缘AI实时分析吊装路径与障碍物距离,确保操作安全;混凝土浇筑机器人依赖边缘计算快速调整振动频率,提升施工质量。

4.3 绿色建造与碳中和目标

绿色建造以低碳技术为核心,推动建筑业向碳中和转型。智能施工技术通过优化材料选择、能源利用和废弃物管理实现减排: AI算法可模拟不同建材的碳排放强度,辅助设计低碳结构方案;光伏一体化(BIPV)技术将太阳能发电与建筑围护结构结合,减少化石能源依赖;物联网监测系统实时跟踪施工机械能耗,动态调整设备运行模式^[3]。

结束语

建筑土木工程领域的智能施工技术正以数字化、自动化与可持续化为核心,重塑传统建造模式。从设计阶段的BIM与参数化优化,到施工阶段的机器人作业与物联网实时管控,再到运维阶段的数字孪生健康监测,智能技术贯穿建筑全生命周期,显著提升了效率、质量与安全性。同时,5G与边缘计算的融合推动了实时决策能力,绿色建造技术助力碳中和目标实现。

参考文献

[1]徐天达.建筑土木工程中的智能施工技术及其应用 [J].智能建筑与智慧城市,2025,(03):122-124.

[2]刘雅菊.智能化管理技术在建筑工程中的应用[J].建 材发展导向,2025,23(02):106-108.

[3]黄强国.数字化技术在建筑施工过程中的应用[J].城市建设理论研究(电子版),2024,(28):124-126.