AI中通信工程技术的发展策略探析

杨学成

江西诚科建设咨询监理有限公司 江西 南昌 330025

摘 要:本文围绕AI通信工程技术的发展策略展开,提出技术融合创新、算力优化与绿色通信、标准化与生态建设、人才培养与跨学科团队建设四大策略。技术融合创新构建协同研发框架与SDN-AI集成;算力优化通过轻量化模型与边缘计算实现;标准化推动国际互认与开放生态;人才培养优化教育体系与团队建设。这些策略为AI与通信技术深度融合提供路径,助力提升通信网络效率与智能化水平。

关键词: AI通信工程技术; 发展策略; 技术融合; 算力优化

引言:随着通信业务向高带宽、低延迟、广连接演进,传统通信技术难以满足智能化需求,AI与通信工程的融合成为发展关键。当前技术融合存在兼容难题,算力与能耗矛盾突出,标准化缺失制约规模化应用,人才缺口阻碍创新。在此背景下,研究AI通信工程技术的发展策略,对突破现有瓶颈、推动通信网络智能化升级、适配5G/6G及工业通信等场景需求具有重要意义。

1 AI 技术对通信工程的核心赋能

1.1 智能化网络优化

AI在动态频谱分配与信道预测中的应用可提升频谱 资源利用率。AI算法能实时分析用户业务需求、信道占 用状态及干扰情况,根据分析结果动态调整频谱分配方 案,即便处于多业务并发场景,也能将空闲频谱资源精 准分配给需求节点、避免频谱资源闲置或过度占用。AI 通过学习历史信道数据,可预测信道质量变化趋势,提 前为业务分配稳定信道,减少因信道波动导致的传输中 断,保障通信连续性。智能网络拓扑优化与资源调度依 托AI的全局分析能力实现[1]。AI可实时采集网络节点连 接状态、数据流量分布及设备负载情况,构建高精度网 络运行模型,精准识别拓扑结构中的冗余链路或负载瓶 颈, 自动调整节点连接方式, 优化拓扑结构以提升数据 传输效率。在资源调度方面, AI能根据业务优先级与网 络负载动态分配计算、存储及带宽资源,确保高优先级 业务获得充足资源支持,同时平衡全网资源负载,避免 局部节点过载影响整体网络性能。

1.2 通信效率提升

基于AI的信号处理与编码技术改进可增强信号传输质量。AI算法能对通信信号进行智能降噪处理,通过深度学习识别并过滤信号中的复杂干扰成分,显著提升信号信噪比,减少传输过程中的信号失真。在编码技术方面,AI可通过学习不同业务场景下的信号特征,设计

适配性更强的编码方案,在保证信号传输准确性的前提下,有效压缩信号数据量,提升编码效率,减少带宽占用,进而提升整体通信效率。实时数据传输与低延迟通信的实现路径依赖AI的预判与优化能力。AI通过分析历史数据传输规律与业务需求特征,可精准预判数据传输高峰时段与关键节点,提前调整网络传输参数,如优化路由路径、提升传输速率,为实时数据传输预留充足带宽与资源。AI可实时监测数据传输延迟情况,当发现延迟升高时,快速定位延迟产生的环节,如链路拥堵、节点负载过高,及时采取调整措施,如切换备用链路、分流数据流量,确保通信延迟控制在较低水平。

1.3 安全与可靠性增强

AI驱动的入侵检测与加密技术为通信安全提供保 障。AI通过学习正常通信数据的特征模式,建立动态 安全基线, 当检测到数据传输行为偏离基线时, 如出现 异常数据流量、陌生访问请求,可快速识别潜在入侵行 为,并触发多级预警机制,及时阻断非法访问。在加密 技术方面, AI可设计动态加密算法, 根据通信场景与 数据敏感程度自动调整加密强度与密钥更新频率, 避免 固定加密方式被破解的风险, 大幅提升数据传输的安全 性。自适应容错机制与网络韧性提升借助AI的动态调整 能力实现。AI实时监测通信网络设备运行状态与链路连 接情况, 当某一设备或链路出现故障时, 可在极短时间 内识别故障位置与影响范围,自动启动备用设备或切换 至备用链路,实现故障的快速自愈,最大程度减少故障 对通信的影响。AI通过分析历史故障数据,可识别网络 中的薄弱环节,提前采取加固措施,如增加冗余设备、 优化链路设计,提升网络应对故障的韧性,确保通信网 络在复杂环境下仍能稳定运行。

2 AI 通信工程技术发展的关键瓶颈

2.1 技术融合难题

AI算法与通信硬件的兼容性挑战显著。多数AI算法 设计聚焦数据处理能力提升,未充分考虑通信硬件的算 力承载上限与接口特性, 部分复杂算法对硬件算力需求 超出常规通信设备承载范围,即便在高性能通信服务器 上运行, 也可能因硬件架构不匹配导致运算效率大幅下 降,无法有效落地[2]。通信硬件的设计初衷围绕传统信号 处理,缺乏适配AI算法的专用架构,算法运行时需额外 进行数据格式转换与资源调度,增加系统延迟,影响通 信服务质量,尤其在实时性要求高的工业通信场景中, 延迟问题更易引发业务中断风险。跨领域知识整合的复 杂性阻碍技术融合进程。AI技术侧重数据建模与智能决 策,通信工程聚焦信号传输、网络优化等物理层与网络 层技术,两者知识体系差异较大。技术研发过程中,需 同时掌握AI算法原理与通信网络架构的复合型人才较为 稀缺,导致设计方案易出现偏向性,要么过度强调AI智 能性而忽视通信实时性要求,要么局限于传统通信框架 而无法充分发挥AI价值,难以实现两者深度协同。

2.2 算力与能耗矛盾

高性能计算需求与能源效率的平衡难度较大。AI 在通信工程中的应用,如实时信号分析、动态网络优化 等, 需持续调用大规模算力支撑数据处理与模型运算, 而通信设备常部署于基站、边缘节点等场景, 能源供应 有限, 部分偏远地区基站甚至依赖太阳能供电, 能源稳 定性难以保障。为满足算力需求盲目提升硬件配置,会 导致设备能耗激增,不仅增加运营成本,还可能超出场 景能源承载能力,引发设备过热、续航不足等问题,影 响网络稳定运行,在极端天气下还可能加剧设备故障概 率。分布式AI模型在通信网络中的部署面临困境。分布 式部署需将AI模型拆分至多个网络节点,通过节点间 协同完成计算任务, 以降低单个节点算力压力。但通信 网络中节点分布分散, 部分边缘节点如家庭网关、小型 基站算力较弱,无法承载模型拆分后的计算任务;节点 间数据传输需占用网络带宽,可能导致数据交互延迟升 高,尤其在高峰时段易出现传输拥堵,反而降低模型运 行效率,难以实现分布式部署预期效果,甚至可能因数 据同步不及时导致模型决策偏差。

2.3 标准化与互操作性

缺乏统一AI通信协议与接口规范制约技术推广。 当前AI与通信融合领域,不同企业基于自身技术体系 制定协议与接口标准,标准间差异较大,部分企业还对 核心协议进行加密处理,限制跨厂商适配。某一厂商的 AI通信设备与另一厂商的设备对接时,需额外开发适配 接口,增加系统建设成本,且适配过程中易出现数据丢 失、指令延迟等问题;协议不统一导致数据交互格式混乱,AI模型无法高效获取跨设备数据,影响模型决策准确性,限制AI通信技术规模化应用。多厂商设备协同的兼容性问题影响网络整体性能。通信网络常整合多家厂商的设备,如AI调度模块、通信传输设备、终端设备等,各设备采用不同技术架构与数据处理逻辑。协同工作时,设备间易出现数据传输断层、指令响应不一致等问题,例如AI调度模块下发的优化指令,部分厂商的传输设备因指令解析逻辑差异无法准确执行,导致网络优化措施无法全面落地,降低网络整体运行效率与稳定性,还可能因设备间协同失效引发连锁故障。

3 AI 通信工程技术的发展策略

3.1 技术融合创新策略

构建AI与通信技术的协同研发框架需打破技术壁 垒,建立跨领域技术对接机制。在研发初期,同步纳入 AI算法专家与通信工程技术人员,明确两者技术需求与 适配标准,例如AI算法研发需提前参考通信硬件的算力 参数与接口特性,通信硬件设计需预留适配AI算法的专 用模块,避免后期兼容问题。同时搭建联合测试平台, 对融合技术方案进行全场景验证,模拟5G/6G、工业通 信等不同通信环境下AI算法的运行效果,及时调整优 化方案,确保技术融合既满足AI智能决策需求,又符 合通信网络的实时性、稳定性要求。推动软件定义网络 (SDN)与AI的深度集成可提升网络管控灵活性[3]。SDN 的控制层与数据层分离架构,为AI算法部署提供适配基 础,将AI模型嵌入SDN控制器,可实现网络状态的实时 分析与动态调控。例如AI通过分析SDN采集的网络流量 数据,自动识别流量高峰时段与拥堵节点,生成路由优 化方案并下发至SDN数据层设备,调整数据传输路径; AI可根据业务类型动态分配网络资源, 为高优先级通信 业务预留带宽,保障服务质量。这种集成模式能充分发 挥SDN的架构优势与AI的智能决策能力,实现网络资源 的高效利用。

3.2 算力优化与绿色通信

开发轻量化AI模型以降低计算负载需聚焦模型结构精简与算法优化。在模型设计阶段,通过剪枝、量化等技术减少模型参数数量,去除冗余计算单元,在保证模型精度的前提下缩小模型体积,使其能在算力有限的通信设备上高效运行。例如针对基站的实时信号处理需求,设计参数规模更小的轻量化AI降噪模型,采用低复杂度激活函数,无需依赖高性能服务器即可完成信号干扰过滤。同时优化模型训练与推理流程,采用增量训练方式更新模型,避免全量训练带来的高算力消耗,减少

通信设备的运算压力与能源消耗,契合绿色通信发展需求。探索边缘计算与联邦学习在通信中的应用可实现算力分布式优化。将边缘计算节点部署于基站、接入网等靠近终端的位置,让AI模型在边缘节点完成本地化推理,减少数据向核心网络传输的带宽占用与延迟,例如边缘节点的AI模型可直接处理终端设备的实时通信请求,无需等待核心网络响应。联邦学习则能在保护数据隐私的前提下实现多节点协同训练,各通信节点在本地训练AI模型,仅上传模型参数至中心节点聚合优化,避免大规模数据传输带来的算力与能耗浪费,同时提升模型对多场景通信需求的适配能力。

3.3 标准化与生态建设

参与国际AI通信标准制定,推动技术互认可打破 行业壁垒, 提升技术通用性。积极加入国际电信联盟、 3GPP等标准组织的AI通信相关工作组,结合自身技术实 践提出标准建议,例如针对AI通信协议的接口格式、数 据交互规范等关键内容,提供经过实验室与现场测试验 证的技术方案,推动形成全球统一的标准体系。主动开 展技术互认测试, 与不同国家、地区的企业达成标准共 识,确保基于统一标准研发的AI通信设备能跨区域、跨 厂商兼容,降低技术推广成本,为AI通信技术规模化应 用奠定基础。构建开放型AI通信技术生态,促进产学研 合作需搭建资源共享平台。企业可开放核心技术接口与 测试环境, 联合高校、科研机构开展技术攻关, 例如高 校聚焦AI通信基础理论研究,企业提供实际通信场景数 据与应用需求,共同突破技术瓶颈;同时推动产业链上 下游协同,鼓励芯片厂商研发适配AI通信的专用芯片, 设备厂商基于标准生产兼容设备,形成从技术研发到产 品落地的完整生态链。这种开放生态能整合各方资源优 势,加速技术迭代,推动AI通信技术从实验室走向实际 应用场景。

3.4 人才培养与跨学科团队建设

培养"通信+AI"复合型人才需优化教育体系与培养模式。在高校课程设置中,增设AI与通信融合相关

课程,例如《AI通信网络优化》《智能信号处理技术》 等,将AI算法原理与通信工程实践结合,加入仿真实验 环节, 让学生同时掌握两领域核心知识; 同时, 开展校 企联合培养项目,组织学生参与企业AI通信技术研发实 践,通过实际项目积累经验,提升解决复杂技术问题的 能力。此外,针对行业现有技术人员开展继续教育,开 设AI通信技术培训课程,帮助更新知识体系,适应技术 融合发展需求。组建跨领域研发团队,强化协同创新能 力需建立高效协作机制。团队成员需涵盖AI算法、通信 硬件、网络架构等不同领域专业人才, 明确各成员职责 与协作流程,例如AI算法人员负责模型设计,通信硬件 人员提供硬件适配支持, 网络架构人员规划技术落地路 径。同时建立定期沟通机制,通过技术研讨会、项目推进 会等形式同步进展、解决问题, 避免因领域知识差异导致 的研发偏差。这种跨领域团队能充分发挥各专业优势, 形成技术合力,提升AI通信技术研发效率与创新水平。

结束语

AI通信工程技术的发展策略从多维度为行业提供了清晰路径,技术融合策略打破领域壁垒,算力优化策略平衡性能与能耗,标准化策略保障技术通用性,人才策略夯实创新基础。这些策略的落地能有效解决当前技术发展难题,推动AI与通信工程深度协同。未来,随着策略逐步实施,AI通信技术将更适配多样化场景需求,为通信行业高质量发展注入动力,助力构建更智能、高效、稳定的通信网络。

参考文献

[1]李莹妮.AI中通信工程技术的发展策略探析[J].中国新通信,2024,26(9):1-4.

[2]杨宣有.基于AI的电子通信工程信息安全防护技术 [J].通信电源技术,2025,42(2):143-145.

[3]王洪岭,晏革.数智化技术在通信工程建设领域的应用现状与发展建议[J].电信工程技术与标准化,2025,38(4):85-87,92.