浅析市政道路施工中的软土地基处理技术

王佳骏

长沙市芙蓉城市建设投资集团有限公司 湖南 长沙 410000

摘 要:在市政道路建设中,软土地基处理技术是确保工程质量与安全的关键环节。本文旨在浅析市政道路施工中软土地基处理技术的应用与实践。针对软土地基的特性,详细探讨了土基加固技术、地基改良技术、换土垫层技术、振密挤密技术以及高压喷射注浆技术等多种处理方法。这些技术通过改善土壤性质、增强地基承载力和稳定性,为市政道路的安全施工和长期使用提供了坚实保障。文章还分析了各技术的适用条件和操作要点,为实际工程应用提供了参考依据。

关键词: 市政道路施工; 软土地基处理; 技术

引言:市政道路施工中的软土具有低抗剪强度、高压缩性等特点,若处理不当,将严重影响道路的承载能力和稳定性。基于此,研究和应用软土地基处理技术,对于提升道路工程的安全性和耐久性具有重要意义。文章将深入分析多种软土地基处理技术的原理、应用及效果,旨在为市政道路施工提供理论支持和实践指导,推动市政道路建设技术的不断进步。

1 软土地基处理在市政道路施工中的重要性

软土地基处理在市政道路施工中具有极其重要的地 位,其重要性不容忽视。第一,软土地基处理直接关系 到道路工程的安全与稳定。软土具有含水量高、压缩 性强、抗剪强度低等特点,如果不对其进行适当处理, 地基将无法承受道路结构的重量和车辆荷载,容易出现 沉降、变形等问题。这不仅会影响道路的平整度,还可 能引发交通事故,对人民的生命财产安全构成威胁。因 此,对软土地基进行有效处理,是确保道路工程安全稳 定的关键环节。第二, 软土地基处理有助于提高道路的 使用寿命。经过科学处理的软土地基,其承载能力和稳 定性将得到显著提升, 能够抵抗外界不利因素的侵蚀和 破坏。这将大大降低道路在使用过程中出现损坏的可能 性,延长道路的使用寿命,减少维修和重建的频率和成 本。第三,软土地基处理也是保证市政道路施工顺利进 行的重要前提[1]。在软土地区进行道路施工,地基处理 不当往往会导致施工机械难以进入、施工进度受阻等问 题。通过对软土地基进行预处理,可以改善施工条件, 提高施工效率,确保施工过程的顺利进行。第四,软土 地基处理也是实现资源节约和环境保护的重要手段。在 处理软土地基的过程中,可以采用一些环保材料和工 艺,减少对自然资源的消耗和环境的破坏。

2 市政道路施工中的软土地基特点

2.1 高含水量与大孔隙

软土地基处理直接关系到道路工程的安全与稳定, 软土具有含水量高、压缩性强、抗剪强度低等特点,如 果不对其进行适当处理,地基将无法承受道路结构的 重量和车辆荷载,容易出现沉降、变形等问题。这不仅 会影响道路的平整度,还可能引发交通事故,对人民的 生命财产安全构成威胁。因此,对软土地基进行有效处 理,是确保道路工程安全稳定的关键环节。另外,软土 地基处理有助于提高道路的使用寿命。经过科学处理的 软土地基,其承载能力和稳定性将得到显著提升,能够 抵抗外界不利因素的侵蚀和破坏。这将大大降低道路在 使用过程中出现损坏的可能性,延长道路的使用寿命, 减少维修和重建的频率和成本。除此之外,软土地基处 理也是保证市政道路施工顺利进行的重要前提。在软土 地区进行道路施工, 地基处理不当往往会导致施工机械 难以进入、施工进度受阻等问题。通过对软土地基进行 预处理,可以改善施工条件,提高施工效率,确保施工 过程的顺利进行。最后,软土地基处理也是实现资源节 约和环境保护的重要手段。在处理软土地基的过程中, 可以采用一些环保材料和工艺,减少对自然资源的消耗 和环境的破坏。

2.2 触变性与流变性

触变性是软土的一个显著特点,它指的是软土在受到扰动或外力作用后,其结构强度会迅速降低,甚至变为稀释状态。在市政道路施工中,这种触变性可能导致地基在挖掘机械或施工车辆的作用下发生破坏,使土壤失去原有的结构强度,从而影响地基的承载能力和稳定性。此外,软土的触变性还可能导致施工过程中的边坡失稳、滑塌等问题,给施工安全带来严重威胁。流变性

则是软土在持续荷载作用下,其变形随时间增长的一种特性。由于软土中含有大量的粘土颗粒和水分,使得其具有较强的压缩性和流动性^[2]。在市政道路施工中,地基在受到道路结构和车辆荷载的长期作用下,软土会发生缓慢的变形和流动,导致道路出现沉降、开裂等问题。这种流变性不仅影响道路的使用性能,还可能对周边建筑物和地下管线造成潜在的安全隐患。触变性和流变性是软土地基在市政道路施工中需要特别关注的问题。

2.3 低抗剪强度与高压缩性

市政道路施工中的软土地基特点之三, 体现在其低 抗剪强度与高压缩性上。这两个特性直接关系到地基的 承载能力和稳定性,对道路施工的质量和安全性具有重 要影响。(1)低抗剪强度是软土地基的一个显著特点。 抗剪强度是指土壤在受到剪切力作用时所能承受的最大 剪切应力。由于软土中含有大量的粘土颗粒和水分,颗 粒之间的粘结力较弱,导致土壤的抗剪强度较低。在市 政道路施工中, 低抗剪强度的软土地基容易受到施工机 械和车辆荷载的剪切作用,发生剪切破坏,进而影响 地基的整体稳定性。这种剪切破坏可能导致地基出现滑 移、沉降等问题,对道路的安全性和稳定性构成威胁。 (2) 高压缩性也是软土地基的一个重要特点。高压缩性 意味着土壤在受到外力作用时容易发生压缩变形。由于 软土中含有大量的水分和孔隙, 使得土壤颗粒之间的空 间较大,容易受到外力压缩。在市政道路施工中,高压 缩性的软土地基在受到道路结构和车辆荷载的作用时, 容易发生较大的压缩变形,导致道路出现沉降、不平整 等问题。这种压缩变形不仅影响道路的使用性能,还可 能对道路的排水系统和周边设施造成不利影响。

3 软土地基处理技术的分类

3.1 土基加固技术

软土地基处理技术是市政道路施工中不可或缺的一环,而土基加固技术则是其中的重要组成部分。土基加固技术主要是通过一系列方法,增强软土地基的承载能力、稳定性和耐久性,以满足道路施工和使用的需求。土基加固技术具有多种方法,每一种方法都有其独特的应用场景和优势。一方面,换土垫层法是一种常见的土基加固技术,它通过将地基浅层的软弱土或不良土挖除,然后分层碾压或夯实,再回填合适的材料,如砂、碎石、粉煤灰等,形成新的地基层。这种方法可以有效提高地基的承载力和稳定性。另一方面,振密、挤密法也是常用的土基加固技术。这种方法利用振动、挤压等手段,使地基土体孔隙比减小,强度提高。例如,强夯法就是其中的一种,它通过强夯作用,在地基中形成碎

石墩体,从而提高地基的承载力和减小变形。除此之外,排水固结法也是一项重要的土基加固技术。这种方法通过在软土地基中设置排水系统,加速地基土体的排水固结过程,使地基土体的强度逐渐提高。在这个过程中,随着土体超静孔隙水压力的消散,土的有效应力增加,地基的抗剪强度相应提高。

3.2 地基改良技术

软土地基处理技术中的地基改良技术,是一项专门 针对软土特性进行优化的工程措施。这种技术通过改变 软土的物理、化学或力学性质,提高地基的承载力和稳 定性,从而满足工程建设的需要。(1)地基改良技术中 常用的方法是固化改良法。固化改良法通过向软土中加 入固化剂,如水泥、石灰、石膏等,利用固化剂与软土 中的水分和粘土颗粒发生化学反应或物理作用, 使软土 产生固化效果。这种固化作用能够有效提高土壤的强度 和稳定性,增加地基的承载能力。固化改良法具有施工 简便、效果明显的特点,因此在软土地基处理中得到了 广泛应用。(2)地基改良技术还包括预压法。预压法是 在地基施工前,通过对土壤施加一定的预压荷载,使土 壤颗粒重新排列、变密实, 从而增加土壤的承载力和稳 定性。这种方法可以有效改善软土地基的沉降和变形问 题,提高地基的整体性能。预压法具有适用范围广、效 果持久的优点,特别适用于对沉降变形要求较高的工程 项目。(3)地基改良技术还包括振密挤密法。振密挤密 法是通过振动或挤压的手段, 使地基土体孔隙比减小, 强度提高。这种方法能够有效改善软土地基的密实度和 稳定性,提高地基的承载能力。振密挤密法具有施工效 率高、效果显著的特点,适用于处理大面积软土地基。 需要注意的是,在选择地基改良技术时,应根据工程实 际情况、软土的性质和改良要求等因素进行综合考虑。 不同的地基改良技术具有不同的适用范围和优缺点,因 此在实际应用中需要进行科学合理的选择和应用。

3.3 换土垫层技术

换土垫层技术是软土地基处理中一种常见且有效的方法,其核心思想是将地基表层的不良土壤替换为性能更好的材料,从而提高地基的承载能力和稳定性。这种技术特别适用于那些表层土壤软弱、厚度不大且排水条件良好的情况。换土垫层技术的实施过程通常包括以下几个步骤:首先,需要对地基进行详细的勘察和测试,以确定不良土层的分布范围、厚度和性质。其次,根据勘察结果,选择合适的换土材料,这些材料通常具有较好的承载能力和压缩性,如砂、碎石、灰土等。接下来,将地基表层的软弱土壤挖除,并分层回填选定的换

土材料。在回填过程中,需要严格控制每层材料的厚度和压实度,以确保换土层的质量。最后,通过适当的夯实或碾压措施,使换土层达到设计要求的密实度和强度。另外,换土垫层技术的优点在于施工简便、效果显著^[3]。通过替换软弱土壤,可以迅速提高地基的承载能力和稳定性,满足道路施工和使用的需求。此外,该技术还可以减少地基的沉降和变形,提高道路的使用寿命。然而,需要注意的是,换土垫层技术只适用于处理表层土壤,对于深层软土的处理效果有限。在实际应用中,换土垫层技术可以与其他地基处理技术相结合,形成综合处理方案。例如,在处理深层软土时,可以先采用排水固结法或振密挤密法等方法进行预处理,然后再采用换土垫层技术进行表层加固。这样可以充分发挥各种技术的优势,达到更好的处理效果。

3.4 振密挤密技术

振密挤密技术,作为软土地基处理技术的重要组成 部分,以其独特的工作原理和显著效果在市政道路施工 中得到广泛应用。该技术主要利用振动或挤压的方式, 对地基土壤进行密实处理,从而增强地基的承载力和稳 定性。振密挤密技术的工作原理在于,通过特定的振动 或挤压设备,对地基土壤施加一定频率和振幅的振动或 挤压力。这些力作用于土壤颗粒, 使其重新排列, 减小 孔隙比,增加密实度,振动或挤压作用还可以促进土壤 颗粒之间的摩擦和咬合,进一步提高地基的整体强度。 再者,在市政道路施工中,振密挤密技术常被用于处理 具有较大孔隙比和较低承载力的软土地基。通过该技术 处理后的地基, 其土壤颗粒分布更加均匀, 结构更加密 实,从而大大提高了地基的承载力和稳定性。这有助于 减少道路在使用过程中因地基沉降、变形等问题而产生 的损坏,延长道路的使用寿命。振密挤密技术的优点在 于施工效率高、处理效果好、适用范围广。与其他地基 处理技术相比,该技术不需要大量的开挖和回填工作, 因此施工周期短,成本相对较低,振密挤密技术适用于 各种类型的软土,包括粘性土、砂性土等,具有较强的 通用性。

3.5 高压喷射注浆技术

高压喷射注浆技术,作为软土地基处理技术中的一 种重要方法,其在提高地基承载力和稳定性方面发挥着 至关重要的作用[4]。这项技术主要通过高压设备将浆液喷 射到地基土体中,利用喷射流的冲击力、离心力和重力 等作用, 使浆液与土粒混合凝结, 形成固结体, 从而达 到加固地基的目的。一是在高压喷射注浆技术的实施过 程中,首先需要根据工程要求和地质条件确定注浆管的 插入位置和深度。然后,利用钻机将注浆管插入预定位 置,通过高压设备使浆液成为高压射流从喷嘴中喷出。 浆液在高压射流的作用下,冲击破坏土体,与土粒混 合搅拌,形成均匀的混合体。随着浆液的继续注入,混 合体逐渐凝结硬化,形成具有一定强度和稳定性的固结 体。二是高压喷射注浆技术的优点在于其施工速度快、 加固效果好。由于浆液能够深入土体内部,与土粒充分 混合,因此形成的固结体具有较高的承载力和稳定性。 此外, 该技术还能够有效减少地基的沉降和变形, 提高 道路的使用寿命。

结语

综上所述,市政道路施工中的软土地基处理技术是一项系统而复杂的工程,它涉及到多种技术手段和策略。在实际应用中,需根据地质条件、工程要求及经济效益等因素,科学合理地选择和应用相应的处理技术。通过不断的技术创新和实践积累,我们能够更有效地解决软土地基带来的问题,提升市政道路工程的整体质量和使用性能。未来,随着科技的进步和工程实践的深入,软土地基处理技术必将得到进一步完善和优化,为市政道路的建设与发展提供更为坚实的支撑。

参考文献

- [1]李鹏雨.市政道路施工中软土路基处理技术的应用 [J].居业.2021(12):243-244.
- [2]刘艳华.市政道路施工中软土路基处理技术的运用分析[J].中国建筑金属结构.2020(14):204-205.
- [3]赵庆文.市政道路施工中软土路基处理方法探析[J]. 低碳世界.2020(25):380-381.
- [4]白敏.浅析市政道路软土路基处理措施[J].城市地理.2021(16):135-137.