水利工程施工中土方建筑技术

张 新

湖北省水利水电规划勘测设计院有限公司 湖北 武汉 438300

摘要:水利工程施工中的土方建筑技术,是确保工程质量和进度的重要环节。本文深入探讨了土方建筑技术在水利工程施工中的具体应用,包括基础清理、挖土与运土、铺土与平土以及压实等关键技术环节。分析了土方建筑技术的优化与创新策略,提出通过引进新型施工机械和材料、提升施工管理和安全水平、探索环保型施工技术等途径,以提高施工效率、降低成本并增强施工安全性。这些措施对于推动水利工程施工技术的进步,保障水利工程的顺利进行具有重要意义。

关键词:水利工程;土方填筑;施工技术

引言:水利工程施工是国家基础设施建设的重要组成部分,土方建筑技术作为其中的关键环节,对于工程质量和施工效率具有至关重要的影响。随着科技的不断进步和水利工程施工要求的日益提高,土方建筑技术也在不断发展和创新,介绍了系统梳理水利工程施工中土方建筑技术的具体应用,探讨如何通过优化和创新技术手段,提高施工效率、降低成本并增强施工安全性。通过深入研究和分析,以期为水利工程施工的顺利进行提供有力的技术支持和保障,推动水利工程建设事业的持续发展。

1 水利工程施工技术概述

1.1 水利工程施工技术体系

水利工程施工技术体系是一个复杂且多维度的集合,涵盖了从基础清理到土方施工,再到混凝土浇筑和机电设备安装等一系列技术环节,该体系不仅关注施工过程的效率和质量,还注重工程的安全性和环保性。在水利工程施工技术体系中,土方建筑技术占据了重要地位。这包括挖土与运土、铺土与平土以及压实等关键技术环节,这些技术的应用,直接决定了水利工程基础的稳定性和承载能力,混凝土施工技术也是不可或缺的一部分,它涉及到模板制作、混凝土浇筑和养护等多个方面,对于保证水利工程的整体质量至关重要,随着科技的不断发展,水利工程施工技术体系也在不断创新和完善。例如,新型施工机械和材料的出现,为土方施工和混凝土施工提供了更加高效和环保的解决方案,智能化和自动化技术的应用,也极大地提高了水利工程施工的效率和精度。

1.2 土石方施工技术的特点与要求

土石方施工技术的特点之一是工程量大且施工周期 长。在大型水利工程建设中,土石方工程量往往达到数 十万乃至数百万立方米,需要投入大量的人力、物力和时间。这就要求施工人员必须具有丰富的经验和技能,确保施工过程的顺利进行^[1]。土石方施工技术对施工质量有严格要求,在施工过程中,必须确保土石方的开挖和填方符合设计要求,保证工程的稳定性和安全性,还需要注意施工过程中的环境保护,减少噪音、尘土和振动对周围环境的影响。土石方施工技术还强调施工效率和经济性,通过优化施工方案、提高机械化程度、合理安排施工顺序等措施,可以有效降低施工成本,提高施工效率。

2 水利工程施工中土方建筑技术的具体应用

2.1 基础清理技术

直接关系到后续施工工序的顺利进行以及整体工程 的质量与安全,该技术主要涉及到对施工现场的杂物、 土壤、岩石等进行全面、彻底的清理, 为后续的土方 施工、混凝土浇筑等工序创造一个良好的作业环境。第 一,在基础清理技术的应用过程中,施工人员首先需要 明确清理的范围和要求,根据施工图纸和现场实际情 况,制定详细的清理方案。清理工作通常从施工现场的 杂物开始,包括各种建筑垃圾、生活垃圾等,这些杂物 必须被彻底清除,以免对后续施工造成干扰。第二,施 工人员会对施工现场的土壤进行清理,这包括对表层松 散的土壤进行挖掘和运输,以暴露出更为坚实的基岩。 在挖掘过程中,需要注意控制挖掘深度和范围,避免对 周围环境和地下设施造成破坏,挖掘出的土壤需要进行 妥善处理,以防止水土流失和环境污染。第三,对于岩 石基础的清理,施工人员需要使用专业的破碎设备和工 具,对岩石进行破碎和清理。在破碎过程中,需要注意 控制破碎力度和破碎范围, 以避免对岩石基础造成过大 的损伤,清理出的岩石碎片也需要进行妥善处理,以确

保施工现场的安全和整洁。第四,除了对杂物、土壤和岩石的清理外,基础清理技术还包括对清理后的基础面进行处理,这包括对基础面进行平整、压实等工作,以确保其满足后续施工的要求,在平整和压实过程中,需要注意控制施工质量和进度,确保基础面的稳定性和承载能力^[2]。第五,基础清理技术还需要关注环保和安全问题,在清理过程中,应采取措施减少对周围环境的影响,如设置防尘设施、控制噪音等,施工人员应严格遵守安全操作规程,佩戴好安全防护用品,确保施工过程中的安全。

2.2 挖土与运土技术

这两项技术不仅涉及到土方量的计算、挖掘设备的 选择,还涉及到土方运输的方式和效率等多个方面。 (1) 挖土技术方面。需要根据工程设计和现场实际情 况,确定挖掘的范围和深度。选择合适的挖掘机械,如 挖掘机、装载机等,进行土方挖掘。挖掘过程中,需要 严格控制挖掘的深度和范围, 避免超挖或欠挖现象的发 生,还需要注意挖掘机械的操作安全,确保施工人员的 生命安全。(2)运土技术。则是将挖掘好的土方运输 到指定地点的过程,在运土过程中,首先需要根据土方 的性质和数量,选择合适的运输设备,如自卸车、铲运 机等。然后, 合理规划运输路线, 确保运输的顺畅和高 效。此外,还需要注意运输过程中的安全问题,如避免 车辆超载、超速等危险行为。为了提高挖土与运土技术 的效率和质量,可以采取一系列优化措施。例如,引入 先进的挖掘机械和运输设备,提高机械化程度,降低人 工劳动强度,加强施工现场的管理和协调,确保挖掘和 运输作业的衔接顺畅,减少等待和空闲时间。此外,还 可以利用现代科技手段,如GPS定位、无人机监测等,对 挖掘和运输过程进行实时监控和调度,提高施工效率和 管理水平。在实际应用中, 挖土与运土技术还需要考虑 一些特殊情况。例如,在遇到较硬的土石材料时,可能 需要采用爆破挖掘法或其他特殊挖掘技术进行处理。在 运输过程中,还需要注意对运输道路的维护和管理,确 保运输的畅通无阻。

2.3 铺土与平土技术

这两项技术涉及到对土方的科学布局、精确铺设以及精细平整,对于实现水利工程的顺利进展起着至关重要的作用。(1)铺土技术方面。施工人员首先需要明确铺土的范围和厚度,根据设计要求进行精确的测量和标注,选择合适的铺土机械和工具,如推土机、铲运机等,进行土方的铺设。在铺设过程中,要严格控制土方的铺设速度和厚度,确保每层土方的均匀性和密实性。

同时,还要注意土方的来源和质量,确保所使用的土方 符合设计要求,没有杂质和不合格物料。(2)平土技术 方面。平土的主要目的是使土方表面达到设计要求的平 整度,为后续的施工工序创造良好的基础。在平土过程 中,施工人员通常会使用推土机、平地机等机械设备, 对土方进行细致的平整。平整时,要按照设计的坡度和 平整度要求进行作业,确保土方表面的平整度和坡度符 合设计要求。(3)提高效率与质量。可以采取一系列优 化措施。首先,加强施工人员的培训和管理,提高施工 技能和安全意识[3]。其次,引进先进的施工机械和设备, 提高施工机械化和自动化水平,降低人工劳动强度。此 外,还可以利用现代科技手段,如激光平整技术、无人 机监测等,对铺土与平土过程进行实时监控和精准控 制,提高施工精度和效率。在实际应用中,铺土与平土 技术还需要考虑一些特殊情况和挑战。例如, 在遇到不 同土质的区域时,需要根据土质的特性进行合理的调配 和处理;在面临复杂地形和气候条件时,需要采取灵活 的施工方法和措施,确保施工质量和安全。

2.4 压实技术

该技术主要是通过机械振动或压力作用,将土壤颗 粒紧密排列,从而增加土体的密度和强度,改善土体的 物理和力学性能。这一技术的应用,不仅有助于提高地 基的密实度和承载能力,还能有效减少地基沉降,保障 工程结构的稳定性和安全性。第一, 压实技术的主要方 法包括静碾压实、振动压实、跳跃压实等,静碾压实是 利用压路机或辊机等重型设备,通过其自身重力对土壤 进行压实; 振动压实则是通过振动设备产生的振动力, 使土壤颗粒重新排列,达到压实效果;而跳跃压实则是 利用专用设备对土壤进行高频、低振幅的压实,适用于 某些特殊土壤条件。第二,在实际应用中,压实技术需 要根据具体的场地情况和压实要求来选择合适的方法和 设备,例如,在高路堤、路床等区域,需要采用冲击与 增强补压的方法,以提高地基的密实度和稳定性;在湿 陷性黄土等软弱地基区域,则需要采用冲压处理的方 法,改善地基的承载性能。第三,在压实过程中,还需 要注意控制密挤比和施工速度,密挤比是指在一定的压 实条件下, 土体的干容重与最大干容重的比值, 控制其 在合理范围内,一般为0.90~0.95之间,以确保达到预期 的压实效果。施工速度的控制同样重要, 过快的施工速 度可能导致压实不均匀,不利于土体的稳定性。第四, 压实技术的实施还需要重视施工质量控制。对于大面积 土体的压实作业,应设置压实截面标杆,以保证压实层 的均匀性。

3 土方建筑技术在水利工程施工中的优化与创新

3.1 施工技术优化策略

施工技术优化策略、提高施工效率的措施、降低施 工成本的途径以及增强施工安全性的方法。(1)引入 技术与创新理念。通过研发和应用新技术、新材料和新 工艺,不断提升施工技术的科技含量和智能化水平,加 强对施工人员的技能培训和技术指导,确保新技术能够 得到有效应用。(2)提高施工效率。主要包括优化施 工方案、加强现场管理和推广机械化施工,通过制定科 学合理的施工方案,减少施工过程中的冗余环节和等待 时间。加强现场管理,确保施工现场的秩序井然,提高 施工效率,推广机械化施工,利用机械设备代替人工操 作,能够大幅提升施工速度和质量。(3)降低施工成 本。的途径主要围绕材料管理、节能降耗和合理利用资 源展开。通过加强材料采购、存储和使用环节的管理, 减少材料浪费和损耗。采用节能型施工设备和工艺,降 低能源消耗。合理利用资源,如回收利用施工废弃物 等,降低资源消耗和环境污染。(4)增强施工安全性。 的方法则包括完善安全管理制度、加强安全教育和培训 以及落实安全防护措施。建立健全的安全管理制度和操 作规程,明确安全责任和要求。定期开展安全教育和培 训活动,提高施工人员的安全意识和操作技能[4]。同时, 加强施工现场的安全监管和检查, 确保各项安全措施得 到有效落实。

3.2 新技术、新材料的应用

新技术、新材料在水利工程施工中的应用,是推动工程领域不断进步和创新的关键所在。特别是在新型挖土机械与运输设备、高性能压实机械与材料以及环保型施工技术等方面的探索和应用,为水利工程施工带来了显著的提升和变革。(1)新型挖土机械与运输设备。这些设备通常配备了先进的传感器和控制系统,能够实现精准挖掘和高效运输。例如,一些新型挖掘机采用了智能定位技术,能够精确控制挖掘深度和范围,避免超挖或欠挖现象的发生。同时,新型运输设备如无人驾驶自

卸车等,能够实现自动化运输,减少人工操作,提高运输效率。(2)高性能压实机械与材料。则进一步提升了地基处理的效果,这些压实机械通常具有更高的压实能力和更好的压实均匀性,能够确保地基的密实度和稳定性达到设计要求。而新型压实材料如高性能土壤稳定剂等,则能够改善土壤的物理和力学性能,提高地基的承载能力和耐久性。(3)环保型施工技术探索。水利工程领域也在不断取得新的突破,例如,采用绿色施工方法和材料,减少施工过程中的噪音、粉尘和废水排放,降低对周围环境的影响^[5]。同时,利用可再生能源和节能技术,降低施工过程中的能耗和碳排放,实现绿色施工的目标。

结束语

水利工程施工中的土方建筑技术,作为工程建设的基石,其重要性不言而喻。随着科技的进步和工程实践的不断深入,土方建筑技术也在不断创新和发展。我们欣喜地看到,新型挖土机械、运输设备以及高性能压实机械的应用,不仅提高了施工效率,更确保了工程质量的稳定可靠。同时,环保型施工技术的探索与实践,也让我们看到了水利工程建设与环境保护和谐共生的可能。展望未来,我们有理由相信,土方建筑技术将继续在水利工程施工中发挥关键作用,为构建更加安全、高效、绿色的水利工程贡献力量。

参考文献

[1]吴洪雨.水利工程施工中土方填筑施工技术探析[J]. 科技经济导刊,2020,28(25):54+53.

[2]孙军萍.水利工程土方填筑施工技术[J].河南水利与南水北调,2020,49(08):67-68.

[3]张光宝,钱建红.试论水利工程施工中土方填筑施工技术[J].绿色环保建材,2020(08):175-176.

[4]王凤彬.水利工程施工中土方填筑技术[J].河南水利与南水北调,2020,49(06):54+73.

[5]郝壮.水利工程施工中土方填筑施工技术[J].河南水利与南水北调,2020,49(05):39-40.