电解铝行业土建施工关键工序技术质量控制分析

李延冰

中国二十冶集团有限公司 上海市 200000

摘 要:随着电解铝行业的蒸蒸日上,电解铝行业土建关键工序施工的技术质量控制成为了电解铝厂房建设过程中至关重要的一个环节。俗话说"万丈高楼平地起",土建施工便是电解铝厂房建设过程中的根基。土建施工过程中关键工序技术质量控制便成了电解铝厂房施工过程中的重中之重。下面本文将针对电解铝行业施工过程中关键工序技术质量控制的重要性及控制要点展开论述。

关键词: 电解铝行业 关键工序 技术质量 控制要点

前言

土建施工现场管理是一个复杂而专业的过程。施工现场的技术质量管理,尤其是关键工序的技术质量管理更加直接影响了土建工程优劣及施工成本。一旦现场管理人员对关键工序技术质量管理不到位施工成本将难以控制,工程项目质量也难以保证。施工现场关键工序的质量管理是项目建设过程中的管理重点,也应是项目建设过程中的常态化管理。因此,提高现场管理人员的技术水平,加强管理人员质量管控意识,严把土建施工关键工序的施工质量是节约施工成本,树立品牌形象的根本战略。

1 加强关键工序技术质量控制的意重要意义

1.1 有利于树立企业品牌形象

关键工序的技术质量控制是工程施工过程中质量控制的核心。工程的施工质量优劣直接影响了企业的社会形象。在市场竞争十分激烈的今天想要提高企业核心竞争力,就必须加强工程技术质量管理。

1.2 有利于工程成本及施工进度的控制

关键工序施工质量控制优劣程度直接影响了施工的 成本。质量把控不到位势必造成工序返工。工序返工所引 起的人、材、机等的消耗直接造成了施工成本的增加,并 且电解铝施工过程中多专业交叉,一个工序停滞将造成很 多工作同时待工,由返工造成增加的成本很难控制。同时 关键工序质量把控不严导致反工必将阻碍正常工序的推 进,严重了将会直接影响工程的整体施工进度以及工程使 用寿命。固,加强关键工序的技术质量控制至关重要。

李延冰,性别:男,出生:1987年01月18日,民族:汉,籍贯:河北省邢台市,学历:本科,职称:工程师,研究方向:土建施工技术。

2 关键工序技术质量控制的影响因素

"人、机、料、法、环"是影响关键工序施工质量的 主要因素。

2.1 技术人员对关键工序施工质量的影响

管理人员的技术水平与工作态度的严谨性直影响着工程的施工质量。在以往的工程建设中也发生过众多因施工技术人员或设计人员技术水准不到位、工作态度不严谨造成工程出现质量事故。土建施工关键工序的技术质量把控一定要秉着严谨的的工作态度,切不可马虎大意、经验主义。

2.2 施工机械对关键工序施工质量的影响

随着工程行业的不断发展,各种工程机械和施工机具也层出不穷。俗话说"工欲善其事,必先利其器"。选择一个适合本工序的机械机具对工程质量的把控事关重大。例如:在桩间土开挖施工过程中,我们就应该根据桩的形式、间距及开挖的深度等选择合适的开挖机具。如在桩间距比较小的情况下选择过大的挖机机械就难免会对桩基进行碰撞扰动进而破坏了桩基质量。

2.3 施工材料对关键工序施工质量的影响

如将工序成品比喻人体器官,施工材料就是组成器官的细胞和组织。施工材料的优劣直接影响了工序成品的生命周期,进而影响了整个工程的生命周期。所以在各工序施工过程中我们应严格把控施工材料的质量。

2.4 施工方法对关键工序施工质量的影响

古人云: "谋定而后动",选择正确的施工方法不仅能加快施工进度更能确保工程的施工质量。例如在进行主厂房测量放线的过程中就应该遵循由"由整体到局部"的原则,这样才能避免累计误差避免出现大的质量事故。选择适合工序的施工方法不但能做到事半功倍,更能保证工序的施工质量。

2.5 施工环境对关键工序施工质量的影响 施工环境对工程实体质量的影响是隐

秘的,不宜被人重视的。同时环境因素对工程质量的 影响也是复杂多变的,气象条件

千变万化,温度、湿度、大风、暴雨、酷暑、严寒等都会直接影响工程质量。又如前一工序往往就是后一工序的环境。因此,根据工程特点和具体条件,应对影响质量的环境因素,采取有效的措施严加控制。

3 土建关键工序技术质量控制要点

3.1 土方施工质量控制要点

土方开挖是土建工程的第一个施工的工序,当我们在 进行土方开挖时就应根据工程特点、环境特点、地质特点、 进度要求等方面充分考虑研究选择适合的开挖方式,同时 开挖时应尽量减少回填的面积,减少对原状土的扰动减少 回填区域沉降的风险。

土方回填前应仔细学习项目的地勘资料并结合现场 地质情况,充分合理的进行开挖土方的材料分析,如场地 开挖土方不适宜作为回填材料则及时选择适合的回填材 料并做好原材复检工作。土方回填时建议选取有代表性的 区域进行回填实验,总结符合项目现场的回填工艺参数, 例如:松铺厚度,压实方式,压实遍数,最佳含水率等。 压实工艺确定后再进行大面积回填,这样既能保证回填质 量又可以给施工过程提供质量控制标准,同时可以加快施 工进度。

3.2 防水施工质量控制要点

电解铝厂房建设中有许多大容积的蓄水池,有些水池 是地上结构。蓄水池的防水是施工过程中十分重要也是容 易出现质量问题的工序。在蓄水池施工前期我们首先要审 防水设计是否与现场实际相符,是否有防水层的施工面设 计反向的情况。例如地上水池的池体外侧采用改性沥青防 水涂料,这种情况就需及时与设计沟通,一般防水涂料的 外侧对应的是迎水面,如设置有误不但防水效果不好还会 影响后续工序的施工质量。大容积的水池尺寸可能超过混 凝土的伸缩缝留置长度范围规定,建议尺寸较大的水池在 合适的位置增加遇水膨胀条或者橡胶止水带,可以预防混 凝土收缩产生的缝隙造成的渗漏。混凝土浇筑时建议采用 添加纤维的抗渗混凝土。混凝土浇筑过程中应严格控制振 捣质量,根据作业线长度、混凝土供应速度、配置合适的 振动棒数量。振捣时应保证振捣棒的插入下层深度不低于 50mm,采用矩形排列方式振捣时移动半径不得大于作用 半径的1.4倍。

对于卫生间防水及屋面防水,首先要控制好基层的坡度及平整度,同时要注意对细部构造的把控,严格按照先细部后大面的一个施工顺序来施工。防水施工完成后应加强成品保护,防止后序施工队防水造成破坏影响防水质量。

电解铝项目附属车间内会涉及众多地下廊道,例如:阳极车间的电解质清理机传输皮带廊,装卸站传输皮带廊,磷铁环传输皮带廊等,这些廊道埋深较深,廊道的防水施工是施工控制的重点工作。首先要选用合格的防水混凝土,其次要规划好施工缝六只位置,做好施工缝接触面的处理,通常施工缝接触面需进行凿毛、冲洗、刷界面剂、埋置止水钢板或橡胶止水带等措施,也可以将施工缝混凝土浇筑成凸字状,附加止水条等措施。施工缝外侧的防水卷材还需要做附加层加强防水处理。廊道长度一般比较长,设计中会存在各种变形缝,建议变形缝处防水采用止水钢板加橡胶止水条内嵌沥青麻丝,来增强防水效果。廊道混凝土墙采用止水螺杆建议选用三段式止水螺杆,便于螺杆孔处的防水处理。廊道外侧防水保护层建议采用砖砌体等硬防护避免施工对防水层进行破坏。

3.3 电解铝厂房结构混凝土施工

电解铝厂房的主体结构室内部分,电解槽母线支墩等 混凝土构件皆为裸露构件。在混凝土施工时应按照清水混 凝土施工的要求进行施工,确保混凝土的观感质量。

施工时应对构件进行规划分区,同一分区内必须使用 同一批次的混凝土连续浇筑施工。混凝土使用的水泥等粘 结材料的牌号、厂家等必须一致,应确保混凝土成形质量 无色泽差异。

施工时应尽量减少模板拼缝,模板使用前应用水冲洗干净或清扫干净后涂刷脱模剂。老化的模板禁止再次使用。

竖向构件浇筑时可事先采用同标号砂浆进行打底,避 免下部混凝土浆液不足造成烂根等质量通病缺陷。

电解车间施工操作平台靠近电解槽一侧通常设计有L形凹槽用于搭设钢格栅,施工过程中应严格控制平台挑檐与电解槽的平面距离,同时控制好L形凹槽的尺寸,凹槽留置时尽量放大留置,一般放大3-5cm,避免投产运行后热胀冷缩导致平台表面收到破坏。

3.4 非金属耐磨面层施工质量控制要点

非金属耐磨地面具有耐磨、防尘、防水、放导电、强度高等优点。被广泛应用于带电车间。

施工顺序为混凝土浇筑并找平→抹光机提浆、刮平→ 第一次铺撒金刚砂复合材料→抹光机揉压、抹平→第二次 撒金刚砂复合材料→抹光机揉压、抹平→边角压光→整体

抹平压光→养护

耐磨地面对基层平整度要求较高,通常为 3-5mm/2m, 所以基层混凝土施工时应采取标高桩、滚杠找平等方法来 控制基层平整度。混凝土塌落度应控制在 80-120mm,塌 落度过大容易造成上层水分过多蒸发形成龟裂。混在温度 过高或者多风季节施工时应做好防止水分蒸发的措施。

耐磨骨料应分两次撒布,第一次布料应为设计总量的 2/3,施工时间应为混凝土浇筑完的 5-6 个小时,脚踩沉落 1cm 左右时为宜。骨料撒布应均匀,不宜用力过大。待骨料被完全浸湿后用磨盘机进行抹面。抹面完成后进行第二次撒布。第二次撒布需与第一次撒布方向垂直。同时用刮杠对面层平整度进行二次找平。待材料完成浸湿后进行第二次抹面收光。收面时应注意磨盘的移动速度与力度不得留下磨盘痕迹。二次收面完成及时进行养护剂养护并覆盖薄膜。

施工控制要点如下:

基层放样:依建筑物结构基准墨线(如墙、柱+50cm线),用水准仪在地坪浇筑区域内定出混凝土预定浇筑厚度,设置水平高程标记,并认真复核,控制最大凹凸偏差在 3-5mm 以内。

浇筑找平:混凝土标号为 C30 以上,砂子采用中砂,楼面可采用细石混凝土,添加剂尽量少用或不用粉煤灰。混凝土浇筑前洒水使地基处于湿润状态。为减少泌水,水灰比控制在 0.5 以下,坍落度控制在 140 ± 20mm。

混凝土分区块施工,尽可能一次浇筑至标高,局部未 达到标高处利用混凝土料补齐并振捣,严禁使用砂浆修补。 使用平板振捣器振捣,并用特制的钢滚筒多次反复滚压, 柱、 边角等部位用木抹拍浆。

提浆整平:基层混凝土初凝时(约3~4h),即可进行耐磨地坪施工,先在抹光机上安装圆盘,整体打磨混凝土并从周边逐渐向内收抹,起到平整和提浆作用,平整度偏差控制在2m范围内不超过3mm。

揉压抹平:第二次均匀撒料后立即采用装圆盘的抹光机抹平,并重复抹光机作业至少两次。抹光机作业时应纵横向交错进行,均匀有序,防止材料聚集。边角处用木抹子处理。平整度偏差控制在2m 范围内不超过2mm。

整体压光:面层材料硬化至指压稍有下陷时,随混凝土凝固时间调整刀片倾斜角度(转速及角度视硬化情况调整),抹光机作业时纵横交错(3次以上)进行。边角部位采用人工钢抹子有序同向的压光,避免抹纹出现。

养护:耐磨地坪施工 5-6 小时后采用塑料薄膜进行覆

盖, 再棉毡进行覆盖然后洒水养护, 主要是防止表面水分蒸发, 保障耐磨材料强度的稳定增长, 养护时间不少于7天。

切缝:非金属耐磨骨料地面施工完成养护7d,按照柱距(要求纵横≤6m)进行锯切分格缝,锯缝必须弹线;缝宽5mm,深20mm。缝内的垃圾、浮灰清除干净,将填缝材料灌入缝内(缝内应干燥);填缝材料平面应低于混凝土基面1-3mm,填缝材料可采用沥青、硅胶等

3.5 电解槽支墩及母线支墩施工质量控制要点

电解槽是座落再电解槽支墩上的 AB 梁上, 电解槽周 边的母线由母线支墩进行支撑。电解槽支墩和母线支墩的 平面位置和顶面高程是影响电解槽与铝母线安装质量的 关键因素。因此再母线支墩施工时应严格控制电解槽及母 线支墩的平面位置,保证所有支墩的纵横中心线处于同一 条直线上。通常,需要再支墩的条形基础上弹设轴线控制 线及模板边线保证支墩的平面位置,施工过程中通过控制 支墩模板的垂直度来控制支墩顶面的平面位置复核设计 要求。电解槽支墩与母线支墩通常会设计 50mm 厚高强 无收缩灌浆料找平层,在支墩混凝土浇筑过程中应严格控 制首次浇筑标高,保证找平层的厚度,如找平层过薄,母 线支墩安放就位后容易将找平层压裂。灌浆料找平层的表 面平整度也是施工过程中控制重点。应把找平层平整度控 制在 2mm 以内, 过大将会导致绝缘垫板因受力不均而产 生破坏。同时还应严格控制母线支墩顶面标高,因母线尺 寸均为加工厂预制件,如果标高过高将直接导致母线无法 正常安装, 需进行返工处理。施工过程中尽量将母线标高 偏差控制在-10mm-0mm 以内。

结束语

电解铝厂房建设过程中还有诸多关键工序。对关键工序质量的控制应贯穿整个项目的建设过程。我们应在人员技术水准、管理的严谨性、提高操作工人的技术能力等诸多方面加以控制。

参考文献

[1] 石刚、王双峰. 电解铝行业安全事故风险防范措施 [J]. 山西冶金, 2024, 05.

[2]单景超、探究电解铝施工项目管理中的成本控制 [J]. 低碳世界, 2017.6

[3]陈奋、22万吨电解铝车间厂房屋面工程整改施工 [J]. 山西科技, 2022