土木工程施工中边坡支护技术的应用

吕立军 中冶天工集团有限公司 天津 300000

摘 要:在土木工程施工中,边坡支护技术的应用至关重要,可通过混凝土墙支护、钢支撑结构、搅拌桩等方式加固边坡,确保基坑安全施工。合理选择支护技术,比如排桩与土方结合、混凝土护岸、地下连续墙等,以确保基坑开挖范围和边坡稳定。同时,实时倾斜测斜仪、应变计和位移监测技术可用于边坡支护监测,及时发现问题并采取应对措施,保障工程安全。有效的边坡支护技术与监测手段的结合应用,是保证土木工程施工质量和安全性的重要环节。

关键词: 土木工程; 边坡支护; 技术分析

1 边坡支护技术特性

1.1 技术比较复杂

边坡支护技术作为土木工程领域的重要组成部分, 有其独特的技术特性。其技术比较复杂是因为在实际工 程中,需要考虑的因素众多且相互关联。边坡支护需 要考虑地质条件,包括土质特性、地下水位、地形地貌 等,这些因素将直接影响支护结构的设计和施工。对于 不同类型的边坡,如岩质边坡、土质边坡、人工填土边 坡等,需要选择适合的支护方式,如挡墙、梯形坑等, 以确保边坡稳定。此外,结构的施工及监测也是边坡支 护技术比较复杂的方面之一。支护结构施工需要考虑材 料选择、力学特性、工程安全等多个方面, 且施工过程 需要高度的精准度和技术水平。对于边坡支护的设计和 施工,需要综合考虑环境保护、成本控制、工程周期等 多方面因素,以实现良好的工程效果。边坡支护技术的 复杂性也体现在其与其他领域的交叉应用上。例如,在 地质、土木、水利等专业领域,都需要边坡支护技术的 支持。由于地质和土木工程涉及的专业知识和技术较为 繁杂,对于边坡支护技术的要求也更高。现代科技的发 展也为边坡支护技术的应用提供了更多可能性, 如地质 雷达、数值模拟等技术的运用,使得边坡支护能够更准 确快速地进行设计和评估。

1.2 环境比较复杂

边坡支护技术在环境比较复杂的情况下,具有独特的技术特性。环境复杂性导致边坡支护技术面临更多挑战和考验。复杂环境下的地形地貌、水文地质等因素相互交织,使得边坡支护需要综合考虑更多因素并做出相应的应对措施。多变的气候条件、地下水位变化等因素也对边坡稳定性提出更高要求,需要选择适合的支护结构和材料来应对气候变化对边坡的影响^[1]。复杂环境条件

下的施工难度增加,需求更高的技术水平和施工管理能力,以确保支护结构的质量和耐久性。边坡支护技术在环境复杂性下需要更为细致的设计方案、更高水平的施工和监测手段,才能有效地应对多变的自然环境,确保工程的稳定和安全。

2 土木工程中边坡支护技术的主要类型

2.1 复合土钉支护技术

复合土钉支护技术是土木工程领域中一种常用的边 坡支护技术,其主要类型包括擋土墙与土钉结合支护、 网格土钉支护、锚网与土钉组合支护等。擋土墙与土 钉结合支护技术,这种支护方式通过设置擋土墙和土钉 结合使用, 实现对边坡的双重保护。擋土墙用来分担地 表负荷,减轻土体对土钉的作用力,起到护坡和排水的 作用; 土钉则通过与擋土墙相结合, 增加了对土体的固 定和支撑,提高了整体的稳定性。网格土钉支护技术, 这种技术基于在土体中设置钢制网格结构,并进行土钉 与网格结构的结合,以增加土体的抗拉强度和耐久性。 网格结构可以提供更大的支撑面积,增强了土钉与土体 之间的连接,有效降低了边坡发生坍塌和滑坡的风险。 锚网与土钉组合支护技术,这种技术将锚网与土钉相结 合,实现了对边坡的双向支撑。锚网可通过桩、锚杆等 固定在地下较深处,形成水平支撑; 土钉则通过深埋在 土体中与锚网结合,形成垂直支撑。这种组合支护技术 不仅增加了边坡的整体稳定性,还提高了边坡对地下水 位变化和外力影响的抵抗能力。复合土钉支护技术的采 用可以根据具体工程情况来选择最适合的支护方式,既 可以满足边坡的支护需求,又能提高边坡的稳定性和抗 滑性。在实际项目中, 工程师需根据地质情况、设计要 求、经济成本等方面综合考虑,选择合适的复合土钉支 护技术,并合理设计、施工,确保边坡在复杂环境下获 得有效保护和维护。

2.2 锚杆支护技术

锚杆支护技术是土木工程领域中常用的边坡支护方 式之一, 主要适用于需要在边坡中加固土体并增加其抗 拉性能的情况。单侧锚杆支护技术,该技术通过钢制 锚杆嵌入边坡土体中, 并与边坡之间形成一定夹角, 锚 杆一端固定于边坡表面,另一端固定于深层稳定土体。 单侧锚杆支护可以有效地增加边坡土体的抗拉性能,阻 止土体滑坡、坍塌等现象的发生, 提高整体边坡的稳定 性。双侧锚杆支护技术,该技术在单侧锚杆支护的基础 上,增加一侧对称的锚杆固定结构。通过两侧锚杆的相 互作用,形成一种对称的支撑体系,有效分担了边坡不 同部位的荷载作用,增加了整体边坡的稳定性和承载能 力[2]。环形锚杆支护技术,这种技术利用多根环形排列的 锚杆作为支护体系,同时固定于深层土体和边坡表面, 形成一个环形稳定结构。环形锚杆支护技术能够有效地 平衡边坡的内部应力分布,减少土体的变形和位移,提 高了边坡的整体稳定性和抗拉强度。锚杆支护技术的应 用可以根据边坡的具体情况和工程需求选择最适合的支 护方式,并且可以结合其他支护技术进行综合应用,以 提高边坡的稳定性和安全性。

2.3 悬臂式支护技术

悬臂式支护技术是土木工程中常见的边坡支护方式 之一,适用于边坡需要局部加固或保护的情况。悬臂挡 墙技术,通过在边坡上设置具有一定强度和刚度的挡墙 结构,其底部处于边坡内部,上部悬空构成悬臂,用以 挡住土方运移和边坡坍塌。悬臂挡墙支护技术可以有效 防止边坡受外力作用而形成位移或崩塌,提高了土体的 抗坍塌性能,延长了边坡的使用寿命。悬臂桩墙技术, 通过在边坡上设置一定间距的桩墙结构, 使桩墙的悬臂 部分起到支撑和挡土的作用。悬臂桩墙支护技术可根据 边坡的土质条件和设计要求选择不同类型的桩墙结构, 如钢筋混凝土桩墙、预制桩墙等, 以达到对边坡的加固 和保护效果。索网悬臂支护技术,该技术将钢索网固定 在边坡表面,形成一个悬臂式的支护体系,并通过索网 与地下深层土体固定连接,提高了边坡的整体稳定性和 抗拉承载能力。索网悬臂支护技术既能有效控制土体位 移和滑塌,又能减少对边坡的影响,具有良好的经济效 益和工程实用性。悬臂式支护技术不仅适用于边坡的加 固和稳定, 也能在建筑施工、公路铁路等领域的边坡工 程中发挥重要作用。合理选择和应用悬臂式支护技术, 结合土质条件和工程需求,将为土木工程中的边坡支护 提供有效的技术支持和解决方案,进一步提高工程质量

和安全性。

2.4 地下连续墙技术

地下连续墙技术是土木工程领域中常见的边坡支护 方式之一,适用于需要在边坡上设置连续墙来增加稳定 性的情况。首先是钢筋混凝土连续墙技术,通过在边坡 中挖掘一定深度的沟槽后,浇筑成一道连续的混凝土墙 体,以加固和支撑边坡土体。这种连续墙的主要作用是 增加边坡的整体稳定性, 防止土体的位移和崩塌, 同时 还能起到一定的抗水渗透和护坡作用[3]。其次是钢板桩连 续墙技术,通过在边坡内挖掘沟槽后,将一系列钢板桩 沿垂直方向插入土体中, 形成一道连续的墙体结构。钢 板桩连续墙对土体的支撑作用十分显著, 能够有效抵抗 土体的滑移和坍塌,同时具有施工便捷、成本相对较低 等优点。最后是搅拌桩连续墙技术,将经过搅拌处理的 土浆在挖掘的沟槽中注入,形成一道连续坚固的墙体结 构。搅拌桩连续墙具有较高的抗剪切和抗拉强度,能够 有效增强边坡的抗滑稳定性,适用于对土体进行加固和 补强的工程需求。地下连续墙技术能够有效提高边坡的 稳定性,减少土体位移和坍塌的风险,在土木工程的边 坡支护中发挥着重要作用

3 土木工程施工中边坡支护技术的具体应用

3.1 深基坑支护施工方案

在土木工程施工中,深基坑支护是一项关键的技 术,尤其在城市建设中,为了满足地下空间利用的需 求,常常需要进行深基坑的挖掘和支护。在深基坑支护 中,边坡支护技术的应用显得尤为重要,能够确保基坑 施工过程中的施工安全、土体稳定以及周围建筑物或交 通设施的稳固。深基坑支护施工方案中边坡支护技术的 应用主要包括以下几种形式: (1)是混凝土墙支护技 术,在深基坑支护中,可以通过在基坑侧壁挖掘后,浇 筑混凝土墙体来形成边坡支护结构。混凝土墙具有较高 的刚性和抗压能力,能够有效地支撑周围土体,防止边 坡坍塌和裂缝,确保基坑周边的安全。(2)是搅拌桩支 护技术,通过在基坑侧壁钻孔并注浆形成搅拌桩,搅拌桩 能有效增加土体的抗压和承载能力,提高边坡的稳定性。 搅拌桩支护还具有施工便捷、环境友好等优点,适用于 基坑周边空间受限的情况。(3)还可以采用锚杆支护技 术。通过在基坑侧壁固定锚杆结构,将锚杆深埋固定于 深层稳定土体中,形成一个支撑体系。锚杆支护能够有 效减少边坡土体位移和变形,提高边坡的整体稳定性[4]。

3.2 基坑开挖

在土木工程施工中,边坡支护技术在基坑开挖过程中具有关键性的应用。基坑开挖是城市建设和地下工程

中常见的作业,但由于基坑在地下,周围土体受到破 坏,易导致边坡失稳和塌方,威胁到周边建筑物和交通 设施的安全。一种常见的边坡支护技术是钢支撑结构, 在基坑侧壁挖掘时,可以设置钢支撑结构,如钢板桩、 钢管桩等,来支撑边坡,防止土体位移和坍塌。这些钢 支撑结构具有较高的承载能力和耐久性, 能够有效地保 持基坑周边边坡的稳定性。深基坑开挖中常用到的一种 支护技术是混凝土墙支护,在基坑侧壁挖掘完成后,可 以沿边坡设置混凝土墙结构来加固和支撑边坡。混凝土 墙具有良好的抗压和抗水性能,能够有效防止边坡土体 滑塌和崩塌,确保开挖过程中的施工安全。地下连续墙 技术也被广泛应用于基坑开挖中的边坡支护。通过设置 一道连续墙结构,如钢筋混凝土连续墙、搅拌桩连续墙 等,来支撑边坡和增强土体的稳定性。这种连续墙支护 体系能够有效地减少基坑周边土体的位移和变形,确保 基坑开挖工程的安全顺利进行。

3.3 确把握基坑开挖的范围

在土木工程施工中, 边坡支护技术的应用在确保基 坑开挖范围的同时显得至关重要。基坑开挖是城市建设 中不可或缺的环节,但基坑开挖范围的确定直接关系 到基坑周边土体的稳定性和周边建筑物的安全。一种常 见的边坡支护技术是排桩与土方结合。在基坑开挖前, 可以首先利用挖桩机在开挖边界处排桩,并加固桩基, 形成围桩结构。然后在围桩内土方进行挖掘,结合土方 与桩体互相支撑,起到加固土体的作用,防止土体位移 和塌方。混凝土护岸也是一种常用的边坡支护方式。在 基坑开挖范围确定后,可在基坑周边设置混凝土护岸, 即通过浇筑混凝土坝墙或设置混凝土挡墙来稳定边坡。 混凝土护岸具有较好的抗压能力和抗水性, 有效防止土 体坍塌,保护周边结构和设施的安全。地下连续墙支护 技术也是基坑开挖范围确定时常使用的边坡支护方式之 一。通过设置一道连续的墙体结构,如钢筋混凝土连续 墙或搅拌桩连续墙,来加固土体、稳定边坡。这种支护 体系能够有效减少边坡土体位移, 确保基坑开挖过程的 安全顺利进行。

3.4 土木工程施工中边坡支护监测

在土木工程施工中,边坡支护技术的具体应用和监测是保障工程安全和质量的重要环节。边坡支护监测是

指在施工过程中通过实时监测和分析技术,对边坡支护 结构和土体变化的情况进行持续观测和评估, 以及时发 现问题并采取相应措施,确保施工安全和工程质量。一 种常见的边坡支护监测技术是倾斜测斜仪监测。通过在 边坡支护结构上设置倾斜测斜仪, 实时监测边坡结构和 土体的倾斜情况。一旦发现边坡倾斜超过设定阈值,就 可以及时采取措施,如调整支护结构或加固土体,防止 边坡变形甚至崩塌[5]。应变计监测技术也被广泛应用于边 坡支护监测中。通过在边坡支护结构上设置应变计,实 时监测结构和土体的应变情况,了解支护结构的受力状 态。一旦发现支护结构受力异常或变形情况,可以及时 调整支护方案,确保边坡支护的稳定性。除此之外,位 移监测技术也是边坡支护监测中的重要手段。通过安装 位移监测仪器,监测边坡土体的变位情况,及时发现土 体位移异常, 以及早预警边坡的不稳定状态, 维护工程 的安全和稳定。

结束语

边坡支护技术在土木工程中扮演着不可或缺的角色,对于基坑开挖和边坡稳定至关重要。通过合理选择和应用支护技术以及监测手段,能够确保基坑施工过程中的安全性和稳定性。在土木工程施工中,不仅要注重技术创新和工程质量,更要时刻关注工程安全和环境保护。相信在工程师们的精心设计和施工团队的共同努力下,能够有效运用边坡支护技术,为城市建设和土木工程的发展贡献自己的力量。让我们携手共同努力,确保每一个土木工程项目的安全顺利完成,为美好城市和生活贡献我们的力量。

参考文献

- [1]申嘉鑫.土木工程施工中边坡支护施工技术运用的探讨[J].房地产世界,2020(17):125-126.
- [2]赵平.土木工程建筑施工中的边坡支护技术[J].建筑技术开发,2020,47(12):45-46.
- [3]魏信飞.略谈土木工程施工中边坡支护技术的应用 [J].江西建材,2019(12):149+151.
- [4]曹玉全.土木工程施工中边坡支护技术的应用分析 [J].中国标准化,2019(14):142-143.
- [5]刘鹏.边坡支护技术在土木工程施工中的应用探析 [J].城市建筑,2019,16(20):177-178.