工业建筑施工问题及质量控制措施

崔学武 河北冶金建设集团有限公司 河北 邯郸 056003

摘 要:工业建筑施工质量是确保工业生产安全和效益的关键因素。然而,在实际施工过程中,多种因素可能影响施工质量。本文深入探讨了工业建筑施工中常见的质量问题,并针对这些问题提出了具体的质量控制措施,旨在提升工业建筑施工的整体质量水平。

关键词:工业建筑; 施工问题; 质量控制

引言

随着工业化的快速发展,工业建筑施工质量日益受到关注。施工质量的优劣不仅关系到建筑物的使用寿命和安全性能,还直接影响着工业生产的连续性和效率。因此,对工业建筑施工问题及质量控制措施进行深入研究具有重要意义。

1 工业建筑施工中的质量问题

1.1 结构安全问题

在工业建筑施工中,结构安全问题是最为核心和关 键的质量问题。其产生主要源于施工材料的不合格、施 工工艺的不当选择或执行,以及施工过程中的误差。这 些问题都可能对建筑结构造成潜在的安全隐患。首先, 施工材料的质量直接关系到建筑结构的稳固性和耐久 性。若使用了不合格的混凝土、钢筋等材料,将严重威 胁建筑的安全。例如, 低质量的混凝土可能导致开裂、 剥落,进而影响结构的整体性;而不合格的钢筋则可能 因锈蚀而减弱其承载能力,甚至引发断裂等严重后果。 其次,施工工艺的选择和执行也至关重要。不恰当的施 工工艺可能导致结构内部的应力分布不均, 从而增加开 裂、变形等风险[1]。比如,混凝土浇筑过程中的振捣不充 分,会导致混凝土内部存在空洞和不密实区域,影响结 构的强度和稳定性。此外,施工误差也是一个不容忽视 的问题。尺寸偏差、定位不准确等施工误差,都可能导 致结构部件之间的连接不紧密或错位, 进而影响整个建 筑的稳定性和承载能力。

1.2 渗漏问题

在工业建筑施工中,渗漏问题是一个常见的且严重 影响建筑物正常使用的质量问题。渗漏通常源于防水层 施工的不当操作或是使用了质量不佳的防水材料。防水 层是阻止水分渗透进建筑物内部的关键屏障,其施工质 量直接关系到建筑物的干燥和舒适程度。然而,在实际 施工中,防水层的处理往往被忽视或处理不当。比如, 在涂抹防水涂料时,如果涂层厚度不足、涂抹不均匀或 者存在漏涂现象,都可能导致防水效果不佳。此外,防 水层与基层之间的粘结强度也是关键,若粘结不牢,则 容易出现剥离,进而导致渗漏。除了施工工艺的问题, 防水材料的质量也直接影响着防水效果。市场上防水材 料种类繁多,质量参差不齐。如果使用了质量不达标的 防水材料,如耐水性差、抗老化能力不足的材料,随着 时间的推移,这些材料容易老化、开裂,从而失去防水 功能。屋顶和墙面是渗漏问题最为常见的部位。屋顶因 长期暴露在外,受到风吹雨打,防水层容易受到损害; 而墙面则可能因为施工缝处理不当、墙体开裂等原因导 致渗漏。一旦发生渗漏,不仅会影响建筑物的美观性和 使用寿命,还可能对存放在建筑物内部的设备、产品等 造成损害,甚至影响到整个工业生产的正常进行。

1.3 地基基础问题

地基基础问题在工业建筑施工中是一个极为关键的 质量隐患。地基作为建筑物的根基, 其稳定性和承载力 直接关系到整个建筑的安全与稳定。地基处理不当或地 质勘察不准确,都可能引发一系列严重的后果。地基处 理不当可能包括地基土壤未经充分夯实、地基加固措施 不到位或地基排水系统设计不合理等。这些问题在建筑 物使用过程中可能导致地基出现不均匀沉降, 进而影响 建筑物的结构安全和稳定性。例如, 地基土壤未经充分 夯实,土壤中的空隙较多,随着时间的推移,建筑物重 量会压实地基,导致局部沉降,严重时可能引起建筑结 构的开裂或变形。另一方面,地质勘察的准确性对于预 防地基问题至关重要。如果地质勘察不细致或不准确, 就可能无法准确评估地基的承载能力和稳定性, 从而给 后续施工带来隐患。例如,如果勘察未能发现地下存在 的软弱层或不良地质条件,那么在这些区域进行建筑施 工时就可能遭遇地基滑动或承载力不足的问题,严重时 会导致建筑物的倾斜甚至倒塌。

1.4 砌体结构问题

砌体结构问题是工业建筑施工中不可忽视的质量隐 患之一。砌体作为建筑物的重要组成部分,其质量直接 关系到建筑的耐久性和安全性。在砌体施工过程中, 若 砖块质量不达标、砂浆配比不合理或砌筑工艺不规范, 都可能引发砌体开裂、变形等严重问题。首先, 砖块质 量不达标是导致砌体结构问题的主要原因之一。如果使 用了质量不合格的砖块,如尺寸不准确、强度不足或存 在裂纹等缺陷,这些砖块在砌筑过程中就难以保证砌体 的整体性和稳定性。随着时间的推移,这些不合格的砖 块可能成为砌体开裂或变形的潜在风险点。其次,砂浆 配比不合理也是引发砌体结构问题的重要因素。砂浆在 砌体中起到粘结和填充的作用,其配比必须科学合理。 如果砂浆配比过稀或过稠,都会影响其与砖块的粘结强 度和砌体的整体性能。过稀的砂浆可能导致粘结不牢, 而过稠的砂浆则可能使得砌筑操作困难,影响砌体的密 实性。最后, 砌筑工艺不规范同样会导致砌体结构问 题。砌筑过程中,如果砖块的排列不合理、灰缝控制不 严格或者砌筑速度过快,都可能影响砌体的质量。例 如, 砖块排列不整齐可能导致砌体的受力不均匀, 进而 引发开裂; 灰缝过宽或过窄则可能影响砌体的强度和稳 定性。

2 工业建筑施工质量控制措施

2.1 加强材料质量控制

在工业建筑施工中,材料质量是施工质量控制的首 要环节。为了确保建筑物的结构安全和耐久性,必须严 格把控建筑材料的质量关。这不仅涉及到材料的初始选 择, 更包括对进场材料的细致检验, 以及在整个施工过 程中的材料管理。首先,建筑材料的选择应遵循国家标 准和设计要求。这意味着,在采购环节,就需要对供应 商进行严格的筛选和审核。只有那些具有良好信誉、能 够提供合格证明和质量保证的供应商,才能成为合作对 象。同时,材料的选型也需根据工程的具体需求和设计 规格来确定,以确保所选材料能够满足建筑的功能性和 安全性要求。其次,对进场的材料进行严格检验是至关 重要的。这一环节不仅包括对材料外观、尺寸、重量等 基本属性的检查, 更涉及到对材料性能的测试。例如, 对于钢筋,需要通过拉伸试验和弯曲试验来验证其力学 性能和工艺性能;对于混凝土,则需要检测其抗压强 度、抗渗性能等关键指标。只有通过这些严格的检验程 序,才能确保进场的材料符合质量标准,从而杜绝不合 格材料的使用[2]。此外,材料的质量控制还应贯穿于整 个施工过程中。这意味着,除了初始的采购和进场检验 外,还需要定期对库存材料进行复查,以确保其在储存过程中未发生质量变化。同时,对于施工过程中使用的材料,也需要进行抽样检测,以监控其质量状态。这种持续的质量控制措施,能够及时发现并处理潜在的材料问题,从而确保施工质量的稳定性和可靠性。

2.2 优化施工工艺

在工业建筑施工中, 优化施工工艺是提升施工质量 和效率的关键措施。通过采用先进的施工工艺和技术, 不仅能够显著提高施工精度,还能在保证质量的同时加 快工程进度。具体而言, 优化施工工艺包括引进和使用 自动化、智能化的施工设备,这些设备能够减少人为操 作的误差,提高施工的精准度和一致性。例如,利用机 器人进行精确的焊接、切割等操作,或者使用无人机进 行高空作业的检查和测量,都能大幅提升施工的质量和 安全性。除了硬件设备的升级,软件技术的运用也同样 重要。通过采用先进的建筑信息模型(BIM)技术,可以 在施工前进行精确的模拟和规划,从而在施工过程中更 好地控制质量、成本和进度。BIM技术还能帮助施工团队 及时发现并解决潜在的问题,减少返工和修改的成本。 同时,加强施工过程中的质量监控是确保施工质量的另 一重要环节。这包括对每个施工环节进行严格的检查和 测试,确保每一道工序都符合行业规范和设计要求。例 如,在混凝土浇筑前,要对模板的稳固性、钢筋的位置 和保护层厚度进行仔细检查;在砌筑过程中,要严格控 制砖块的排列、砂浆的饱满度以及灰缝的均匀性[3]。此 外,定期的质量评估和审计也是必不可少的。通过邀请 第三方机构或专家对施工过程进行全面的审查和评估, 可以及时发现并纠正施工中存在的问题, 进一步提升施 工质量。

2.3 强化施工人员培训

在工业建筑施工领域,施工人员的技能水平和质量意识对工程质量有着至关重要的影响。因此,定期对施工人员进行技能培训和质量意识教育显得尤为必要。这种培训不仅旨在提高他们的专业水平,更在于培养他们的责任意识和严谨的工作态度。技能培训方面,应着重于提升施工人员在各自岗位上的专业技能。例如,对于钢筋工,培训可以包括钢筋的加工、连接和安装等关键技术;对于混凝土工,可以重点培训混凝土的浇筑、振捣和养护等技术要点。此外,随着新技术、新工艺的不断涌现,培训还应涉及这些前沿技术的操作和应用,使施工人员能够紧跟行业发展的步伐。除了技能培训,质量意识教育同样不可忽视。通过案例分析、质量事故讲解等形式,向施工人员灌输"强化质量"的理念,让他

们深刻理解工程质量对于建筑物安全、使用寿命以及企业形象的重要性。同时,要强调施工过程中严格遵守操作规程和质量标准的必要性,使每一位施工人员都能成为工程质量的守护者。为了确保培训效果,可以采取多种教学方法,如理论讲解、实操演练、小组讨论等,以激发施工人员的学习兴趣和参与热情。此外,定期对施工人员的技能和知识进行考核,也是检验培训效果的重要手段。通过考核,可以及时发现施工人员在技能和意识方面存在的不足,并针对这些问题进行有针对性的再培训。

2.4 完善质量管理体系

在工业建筑施工过程中,一个健全和完善的质量管 理体系是确保工程质量的基石。这一体系需要明确各环 节的质量控制要点,细化到每一个施工工序,确保从 材料采购到工程竣工的每一个环节都有严格的质量控制 标准。首先,建立详尽的质量管理计划和流程是必不可 少的。这包括制定明确的质量目标、设立专门的质量管 理部门,并配备专业的质量管理人员。这些人员需要对 整个施工过程进行全程监控, 确保施工活动严格按照既 定的质量标准进行。其次,明确各环节的质量控制点是 关键。这涉及到对每一个施工环节的细致分析, 确定可 能出现质量问题的风险点,并制定相应的预防和控制措 施。例如,在混凝土浇筑过程中,控制点可能包括混凝 土的配合比、浇筑速度、振捣方式等,这些都需要有明 确的操作规程和质量标准。同时,明确各环节的责任人 也是质量管理体系中的重要一环。每个施工环节都应有 专人负责,这些责任人需要对自己的工作环节负责,确 保施工质量符合标准。在出现问题时, 能够及时采取措 施进行纠正,并向上级报告[4]。此外,定期的质量检查和 评估是确保质量管理体系有效运行的重要手段。这包括 对已完成的工程部分进行质量检查,对施工中出现的问 题进行及时记录和分析,并根据检查结果对施工质量进 行评估。通过这些检查和评估,可以及时发现并纠正施工 过程中的质量问题, 防止问题积累到无法挽回的地步。

2.5 加强后期维护与管理

工业建筑在使用过程中的后期维护与管理,是确保

其长期安全、稳定运行不可或缺的环节。这一环节涉及 对建筑结构、各类设施以及整体环境的持续监测与维 护,旨在预防潜在问题,及时响应并解决已出现的问 题。在后期维护方面,针对建筑结构,应实施定期的结 构健康监测。这包括对主体结构的变形、裂缝等情况进 行细致的检查,并利用先进的无损检测技术评估结构的 内部状况。一旦发现结构损伤或性能退化,应立即采取 修复措施,以确保建筑的承载能力和稳定性。同时,对 于工业建筑内部的各类设施,如电气设备、管道系统、 通风与空调系统等, 也需要进行定期的检查与维护。例 如, 电气设备的绝缘性能、接地系统的有效性, 以及管 道系统的密封性和流体输送效率等,都是维护工作的重 点。这些设施的正常运行不仅关系到建筑的使用功能, 还直接影响着生产安全。在管理层面,应建立完善的维 护档案,记录每次检查、维修的详细情况,以便追踪问 题、分析原因并优化维护策略。此外,通过对维护数据 的分析,可以预测设备或结构的寿命,从而制定合理的 更换或大修计划。

结语

工业建筑施工质量控制是一个系统工程,涉及材料、工艺、人员和管理等多个方面。本文通过分析工业建筑施工中的常见质量问题,提出了针对性的质量控制措施。这些措施的实施将有助于提升工业建筑施工的整体质量水平,确保工业生产的顺利进行。未来,还需不断探索和创新质量控制方法,以适应工业建筑施工的新要求和新挑战。

参考文献

[1]刘明亮,郑义,黄鹏.工业建筑工程施工全过程质量管理研究[J].中国建筑装饰装修,2023,(07):113-115.

[2]田义龙.工业建筑工程现场施工的管理与质量控制探究实践[J].居舍,2020,(14):173.

[3]李先华.浅论工业建筑工程施工质量控制要点及措施[J].建材与装饰,2019,(19):24-25.

[4]王义超.工业建筑施工现场质量管理分析[J].工程技术研究,2020,5(18):154-155.