钢结构安装施工技术

王斌

江苏省工业设备安装集团有限公司 江苏 扬州 225000

摘 要:钢结构安装施工技术涉及钢结构的设计、加工制作和安装等多个环节。该技术以钢材为主要材料,通过焊接、螺栓连接等方式将钢构件组合成稳定的结构体系。在施工中,需严格遵循安全操作规程,设置完善的安全设施和防护措施,确保施工过程的安全。此外,随着新工艺新技术的应用,如预拼组合技术、一体化制造技术等,钢结构安装施工效率和质量得到显著提升,为现代建筑领域的发展提供了有力支持。

关键词: 钢结构; 安装; 施工技术

引言:钢结构安装施工技术作为现代建筑领域的重要支柱,以其高强度、高稳定性、施工周期短等优势,在建筑行业中占据着不可或缺的地位。该技术以精密的设计、严格的加工制作和规范的安装流程为基础,确保钢结构建筑的安全性和耐久性。随着科技的不断进步,钢结构安装施工技术也在不断创新与发展,为建筑行业的可持续发展注入了新的活力。本文旨在探讨钢结构安装施工技术的关键要点和最新发展趋势,以此为相关领域的研究和实践提供参考。

1 钢结构在现代建筑中的重要性

钢结构在现代建筑中的重要性不容忽视, 其独特的 性能和广泛的应用领域使其成为现代建筑领域的核心材 料之一。第一,钢结构以其高强度和稳定性成为现代建 筑的关键支撑。钢材具有较高的强度和硬度,能够承受 较大的荷载, 保证建筑物的稳定和安全。特别是在高层 建筑、大跨度桥梁等项目中, 钢结构展现出卓越的承载 能力和稳定性。例如,上海中心大厦作为世界上最高的 钢结构建筑之一, 其高度达到632米, 钢结构的使用使得 该建筑能够实现更大的高度,同时具备良好的抗风和抗 震能力。第二,钢结构的轻质化设计降低了建筑自重, 减小了基础的负荷,从而节省了建筑材料的使用量。与 传统的混凝土建筑相比,钢结构建筑具有更低的自重, 这有助于减轻土地压力,降低对环境的影响。此外,钢 结构的施工效率高,可以在工厂预制后运至现场进行组 装,大大缩短了施工周期。这种快速施工的特点使得钢 结构在现代建筑领域具有极高的竞争力。第三,钢结构 的可塑性和灵活性使得建筑设计更加多样化。钢材具有 良好的可塑性和可加工性,可以根据建筑设计的需要进 行高度定制,实现各种复杂的建筑形态[1]。这种灵活性使 得钢结构在高层建筑、大跨度桥梁、体育场馆等建筑项 目中得到广泛应用。同时,钢结构还能够实现更大跨度 的悬挑和广大开间,满足各种不同的建筑需求。第四,钢结构还具有良好的环保性能。钢材是一种可循环利用的材料,其生产过程中产生的废弃物相对较少。在拆除和改造过程中,钢结构也可以方便地进行拆卸和重新利用,减少了对自然资源的消耗。同时,钢结构建筑在施工过程中的噪音、粉尘等污染也相对较低,有利于保护环境和改善施工现场的工作环境。

2 钢结构安装施工的关键技术

2.1 钢构件的加工与预制技术

在钢结构安装施工中,钢构件的加工与预制技术直 接关系到钢结构的质量、精度和安全性,同时也对整个 工程的施工进度和成本控制产生深远影响。钢构件的加 工与预制技术需要遵循严格的设计规范和工艺要求。设 计师需要根据工程的具体需求和结构特点,制定出详细 的设计图纸和加工方案。这些图纸和方案需要精确到每 一个细节,包括构件的尺寸、形状、连接方式、材料选 择等。只有这样,才能确保加工出的钢构件符合设计要 求,满足工程需要。在加工过程中,需要采用先进的加 工设备和工艺方法。例如,对于大型钢构件的切割,可 以采用激光切割或等离子切割技术, 这些技术能够实现 高精度、高效率的切割,保证构件的尺寸精度和表面质 量。对于钢构件的焊接,需要采用合适的焊接工艺和焊 接材料,确保焊缝的质量和强度。除了加工过程外,钢 构件的预制也是关键技术之一。预制是指在工厂内对钢 构件进行预组装和预调试, 以确保构件在运输到施工现 场后能够顺利安装。在预制过程中,需要严格按照设计 图纸和加工方案进行操作,确保构件的尺寸、形状、连 接方式等与设计要求一致。除此之外, 钢构件的加工与 预制技术还需要考虑材料的选择和质量控制。材料的选 择直接影响到构件的质量和性能,因此需要选择符合设 计要求的优质钢材。

2.2 钢结构安装过程中的测量与定位技术

钢结构安装施工中的测量与定位技术, 主要用于确 定钢构件在空间中的准确位置和方向。通过精确测量和 定位,可以确保钢构件之间的连接精度,避免安装误差 累积,从而保证整个钢结构的稳定性和安全性。在钢结 构安装前,首先需要进行基础定位,确定钢结构的基准 点和轴线。这一步骤通常使用全站仪、经纬仪等高精度 测量设备,通过实地测量和计算,确定出准确的基准点 和轴线位置。在钢构件吊装前,需要对其尺寸、形状、 角度等参数进行精确测量,确保其与设计图纸一致。在 钢结构安装过程中,需要不断对钢构件的位置和角度进 行监测和调整。这通常使用激光测距仪、经纬仪等测量 设备,通过实时监测和反馈,确保钢构件的安装精度满 足设计要求。对于大型钢结构工程,合拢段的安装尤为 关键[2]。在合拢段安装前,需要进行连续观测,掌握温 度变化对合拢间隙的影响。同时,还需要采用三维千斤 顶等设备对合拢段进行微调,确保合拢精度满足设计要 求。在钢结构安装施工中,测量与定位技术的精度要求 非常高。一般来说,钢构件之间的连接精度应控制在毫 米级别。为了确保测量精度,需要使用高精度测量设 备,并对测量数据进行严格校核和审查。

2.3 钢结构焊接技术

在选择焊接技术时,需要根据钢结构的材料、厚 度、接头形式以及焊接质量要求等因素进行综合考虑。 例如,对于较薄的钢板,可以采用手工电弧焊或气体保 护焊; 而对于较厚的钢板或大型结构件, 埋弧自动焊则 更为适合。焊接前的准备工作对于保证焊接质量至关 重要。需要对焊接部位进行清洁,去除油污、锈蚀等杂 质,以确保焊缝的质量,根据焊接工艺要求选择合适的 焊接材料,如焊条、焊丝等,并对其进行严格的质量检 查。除此之外,还需要对焊接设备进行检查和调试,确 保设备处于良好的工作状态。控制焊接电流和电压:焊 接电流和电压是影响焊缝质量的关键因素。需要根据焊 接材料的种类、厚度以及焊接方法等因素,合理设置焊 接电流和电压。焊接速度过快或过慢都会影响焊缝的质 量。需要根据实际情况调整焊接速度,确保焊缝的熔透 深度和宽度符合要求。对于大型钢结构件, 需要合理安 排焊接顺序,以减少焊接变形和残余应力。多层焊接 时,需要控制层间温度,避免层间温度过高或过低对焊 缝质量的影响。焊接完成后,需要对焊缝进行质量检 验。常用的检验方法包括外观检查、无损检测等。外观 检查主要检查焊缝表面是否有裂纹、夹渣等缺陷; 无损 检测则通过射线、超声波等手段对焊缝内部质量进行检 测。只有经过严格的质量检验,才能确保钢结构焊接质量符合要求。

2.4 高强度螺栓连接技术

高强度螺栓连接技术主要是利用连接件接触面之间 的摩擦力来阻止构件相互滑移,这种摩擦力是通过施加 螺栓的预拉力来实现的,从而使构件之间形成足够的 夹紧力,确保连接的稳固性。高强度螺栓连接的关键在 于最大限度地提高构件的夹紧力和增大构件接触面的摩 擦系数。高强度螺栓必须使用高强度的材料制造,如合 金钢或不锈钢。这些材料具有出色的抗拉强度和抗剪切 强度,能够在高负荷下保持连接的稳定性。预拉力是通 过将螺栓旋入螺孔时施加的额外力, 以确保连接的夹紧 力。这种额外的预拉力有助于消除螺栓和螺母之间的松 动,从而提高连接的稳固性。高强度螺栓连接包括接头 组装、安装高强度螺栓、高强度螺栓紧固以及紧固质量 检验等步骤。在连接过程中,需要确保螺栓自由穿入孔 内,避免强行敲打,且垫圈应安装在螺母一侧,不得装 反。高强度螺栓的紧固质量检验是确保连接质量的重要 环节。常用的检验方法包括扭矩法和转角法。检查应在 终拧后一定时间内进行,以确保连接的稳定性和安全 性。高强度螺栓连接技术具有施工简单、受力性能好、 可拆换、耐疲劳以及在动力荷载作用下不致松动等优 点。这些优势使得高强度螺栓连接技术在机械、建筑、 桥梁等领域得到了广泛的应用。

3 钢结构安装施工的安全管理

3.1 设立安全责任人与安全培训

在钢结构安装施工中,安全管理是至关重要的一 环。为了确保施工过程中的安全性和降低事故风险,设 立安全责任人和进行安全培训是两项关键措施。(1)需 要明确安全责任人的身份和职责。安全责任人应由具有 丰富安全管理经验和专业知识的人员担任,负责监督和 管理整个施工过程中的安全工作。其职责包括但不限于 制定安全管理制度、组织安全教育培训、监督施工现场 安全状况等。(2)制定安全生产责任制。安全责任人应 负责制定安全生产责任制,明确各级管理人员和操作人 员的安全职责。通过制定明确的责任制度,确保每个人 都清楚自己的安全职责,从而形成全员参与安全管理的 良好氛围。(3)加强监督管理。安全责任人应加强对施 工现场的监督管理, 定期进行安全检查, 及时发现和消 除安全隐患。同时,应建立安全隐患排查和整改机制, 确保安全隐患得到及时有效的处理。(4)安全培训应 针对全体施工人员,包括管理人员、技术人员和操作工 人等。培训内容应包括安全生产法律法规、安全操作规 程、安全防范措施、应急救援知识等。通过培训,提高施工人员的安全意识和操作技能,确保他们能够在施工过程中严格遵守安全规定和操作规程。(5)安全培训可以采用多种方式进行,如集中授课、现场示范、模拟演练等。培训时间应根据工程规模和施工进度合理安排,确保每个施工人员都能够接受到足够的安全培训。(6)为了确保安全培训的有效性,应对培训效果进行评估。评估方式可以包括考试、问卷调查等。通过评估,了解施工人员对安全知识的掌握程度,及时发现和解决培训中存在的问题,进一步提高培训效果。

3.2 安全设施与防护措施

钢结构安装施工往往涉及高空作业、吊装作业等高 风险作业, 因此, 必须设置完善的安全设施和防护措施 来确保施工人员的安全。施工平台是高空作业的重要 支撑设施, 需采用坚固的材料搭建, 并设置防护栏杆, 以确保施工人员的安全。安全网则用于防止人员或物体 从高处坠落,特别是在无法设置防护栏杆的区域,必须 张挂安全网。高空作业时,施工人员需佩戴安全绳索和 防护带,以确保在发生意外时能够得到有效的保护。安 全绳索应定期检查,确保其强度和可靠性;防护带应正 确佩戴,并随时检查其完好性。钢结构安装施工中涉及 焊接等作业,可能产生高温和火花,因此需设置防火设 施,如灭火器和消防水管[3]。同时,对于电气设备,需 设置漏电保护装置和接地装置, 防止电击事故。在施工 区域设置明显的警示标志和隔离设施, 如警示灯、警示 牌、围栏等,以提醒非施工人员远离危险区域,减少事 故的发生。吊装和起重设备是钢结构安装施工中不可或 缺的设备,需经过严格检查和维护,确保其稳定性和安 全性。在吊装过程中,应设置专人指挥,确保吊装作业 的安全进行。

3.3 安全监控与应急处理

安全监控是钢结构安装施工过程中对施工现场进行 实时、全面、动态的安全检查和监督的过程。在施工 前,应制定详细的监控标准,包括施工现场的安全管理 要求、作业人员的行为规范、设备的安全操作规程等。 这些标准将为安全监控提供明确的指导。根据监控标 准,安装适当的监控设备,如摄像头、传感器等,对施 工现场进行全方位的监控。这些设备能够实时传输现场 数据,为安全监控提供有力的支持。在钢结构安装施工 过程中, 应对各个关键节点进行实时监测, 记录数据和 变化情况。这些数据将用于后续的数据分析和处理。将 监测到的数据进行分析, 比对监控标准, 判断结构是否 符合要求,发现潜在问题和风险。对于发现的问题,应 及时采取措施进行整改和纠正。应急处理是在发生安全 事故时,迅速、有效地采取措施进行救援和处理的过 程。这一环节对于减少事故损失、保障人员安全具有重 要意义。在施工前,应制定详细的应急预案,明确应急 处理的流程、责任人和具体措施。预案应涵盖各种可能 发生的安全事故,如火灾、坍塌、坠落等。根据应急预 案,进行必要的应急准备,包括准备必要的救援设备、 器材和药品,培训应急救援人员等。这些准备将确保在 发生安全事故时能够迅速响应。在发生安全事故时,应立 即启动应急预案,组织应急救援人员进行救援和处理。同 时,应向相关部门报告事故情况,请求外部支援。在事故 处理完毕后,应对事故原因进行深入分析,总结经验教 训,制定改进措施,防止类似事故再次发生。

结语

总之,钢结构安装施工技术是建筑工程领域中的关键技艺,它不仅推动了建筑行业的发展,还为现代建筑提供了更为安全、稳定和高效的解决方案。随着技术的不断进步和创新,钢结构安装施工技术将继续朝着更高效、更环保、更智能的方向发展。未来,我们有理由相信,钢结构安装施工技术将在建筑行业中发挥更加重要的作用,为人类创造更加美好的生活环境。

参考文献

[1]董瑞丰.探讨建筑钢结构安装施工技术[J].智能城市,2020,6(09):215-216.

[2]李剑峰.多层钢结构厂房安装施工技术分析[J].江西建材,2020(04):165-166.

[3]赵兴杰.建筑钢结构安装技术及质量控制探究[J].绿色环保建材,2019(09):210+212.