基于BIM技术的建筑结构设计与管理优化

何建鹏 曹 斌 宁夏建筑设计研究院有限公司 宁夏 银川 750001

摘 要:随着科技的飞速发展,建筑行业正经历着前所未有的变革。建筑信息模型(BIM)技术的引入,为建筑结构设计与管理带来了革命性的改变。本文旨在探讨基于BIM技术的建筑结构设计与管理优化,分析BIM在提升设计效率、优化管理流程以及促进项目各方协同工作方面的作用。

关键词: BIM技术; 建筑结构设计; 管理优化

引言

建筑信息模型(BIM)是一种数字化的建筑设计和施工管理工具,它通过集成建筑项目的几何、物理和功能特性,为项目全生命周期管理提供了一个共享的信息资源。近年来,BIM技术在全球范围内得到了广泛的关注和应用,其在建筑结构设计与管理中的优势日益凸显。

1 BIM 技术在建筑结构设计中的应用

1.1 三维建模与可视化设计

BIM技术,即建筑信息模型技术,通过其强大的三 维建模功能,彻底改变了传统建筑结构设计的方式。在 传统的二维CAD设计中,设计师需要通过平面图、立面 图、剖面图等多个视图来表达一个三维的建筑结构,这 不仅增加了设计的复杂性,也容易导致信息的不一致和 误解。而BIM技术的三维建模功能,使得设计师可以直接 在三维空间中进行设计和调整,大大提高了设计的直观 性和准确性。在三维建模过程中, BIM软件允许设计师通 过拉伸、旋转、镜像等操作, 快速创建出建筑的基本形 态。设计师可以实时地看到建筑结构的立体效果,从而 更好地把握建筑的空间感和比例关系。同时, BIM技术还 支持对建筑材料、纹理、颜色等属性的详细设置, 使得 设计效果更加逼真,有助于设计师更好地表达自己的设 计意图。除了基本的建模功能外, BIM技术还提供了丰富 的可视化设计工具[1]。通过这些工具,设计师可以轻松地 调整光线、阴影、视角等参数,生成高质量的渲染图像 和动画,以便更直观地展示设计方案。这种可视化设计 方式不仅提高了设计师与业主、施工团队等利益相关方 的沟通效率,也有助于发现和解决设计中的问题。在建 筑结构设计中, 空间冲突是一个常见的问题。例如, 不 同专业的管线、设备等可能会在空间上产生冲突,导致 施工难度增加或影响使用功能。通过BIM技术的三维建模 和可视化设计,设计师可以在设计阶段就及时发现并解 决这些潜在的空间冲突。

1.2 参数化设计与修改

参数化设计是BIM技术的核心特点之一,它允许设 计师通过定义和调整一系列参数来控制建筑构件的几何 形状、尺寸和位置。这种设计方法不仅大大提高了设计 的灵活性, 也使得设计方案能够快速适应各种变化。在 BIM软件中,每一个建筑构件,如墙、柱、梁、板等,都 可以被赋予一系列参数。这些参数可以是长度、宽度、 高度等基本的几何尺寸, 也可以是材料属性、荷载条件 等更为复杂的参数。设计师只需调整这些参数的值, 软 件就能自动更新构件的几何形状和物理属性, 从而快速 生成新的设计方案。参数化设计的优势在于其高度的灵 活性和可重用性。当客户需求发生变化,或者设计师需 要探索不同的设计选项时,只需简单地调整参数,而无 需从头开始绘制新的图纸。这不仅节省了大量时间,也 使得设计师能够更高效地响应各种设计挑战。此外,参 数化设计还方便了设计师对多种设计方案进行比较和优 化。通过调整参数,设计师可以迅速生成多个设计方 案,并利用BIM软件的可视化功能进行直观的对比。这 样,设计师可以更容易地找出最优的设计方案,满足客 户的实际需求。除了在设计阶段的应用,参数化设计在 施工阶段也具有重要意义。由于BIM模型中的每一个构件 都是参数化的, 因此施工团队可以根据实际情况调整这 些参数,以适应现场的变化。这种灵活性使得BIM模型能 够更好地服务于施工过程,提高施工效率和准确性。

1.3 结构分析与优化

在建筑结构设计过程中,确保结构的安全性和稳定性是至关重要的。BIM技术通过与结构分析软件的紧密结合,为设计师提供了一个强大的工具,可以在设计阶段就对建筑结构的性能进行深入的分析和优化。首先,BIM模型本身包含了丰富的建筑信息,如构件的几何形状、材料属性、连接方式等。这些信息可以直接导入到结构分析软件中,无需进行繁琐的数据转换或重新建

模。这大大提高了分析的准确性和效率。结构分析软件 通常具备多种分析功能,如静力分析、动力分析、模态 分析等。通过这些分析,设计师可以全面了解结构在各 种荷载条件下的响应,包括位移、应力、应变等关键指 标。这些分析结果以直观的图形或数据表格形式展示, 帮助设计师快速识别潜在的问题区域。基于结构分析的 结果,设计师可以对设计方案进行优化。例如,如果发 现某些区域的应力集中过高,设计师可以调整构件的尺 寸、形状或材料,以降低应力水平[2]。或者,如果结构 的自然频率与某些外部激励频率接近,可能导致共振问 题,设计师可以通过修改结构布局或增加阻尼措施来避 免这种情况。此外, BIM技术还支持多种设计方案的快速 比较。设计师可以创建多个设计选项,分别进行结构分 析,然后根据分析结果选择最优方案。这种基于性能的 设计方法不仅提高了设计质量,也减少了后期修改和返 工的可能性。

2 BIM 技术在建筑结构管理中的优化

2.1 信息管理与协同工作

在建筑结构管理中,信息的高效管理和项目团队之 间的协同工作是确保项目顺利进行的关键因素。BIM技术 通过建立一个集中、共享的信息平台, 为项目各方提供 了一个无缝沟通的环境,从而显著提升了协同工作的效 率。这一信息平台不仅是一个数据存储和共享的中心, 更是一个智能的协作工具。在这个平台上,建筑师、结 构工程师、施工团队、项目管理方等可以实时查看和更 新项目信息。无论是设计变更、施工进度,还是材料使 用情况, 所有相关信息都能在平台上得到及时更新和反 映。BIM技术的这一特点极大地减少了信息传递的延误和 错误。在传统的工作模式中,项目信息的传递往往依赖 于纸质文档或电子邮件,这种方式不仅效率低下,而且 容易出现信息丢失或误解的情况。而BIM信息平台确保了 信息的实时性和准确性,使得项目团队能够基于最新的 数据进行决策和工作。此外,BIM信息平台还支持多种 文件格式的导入和导出,确保了与其他专业软件的兼容 性。这意味着不同专业的团队成员可以使用自己熟悉的 软件进行工作,然后将成果导入BIM平台,实现信息的 无缝对接。协同工作的另一个重要方面是版本控制[3]。在 BIM信息平台上,每一次的信息更新都会生成新的版本, 项目团队可以清晰追踪到每一次的变更历史和相关责任 人。这不仅有助于问题解决和责任追溯,也为项目后期 的审计和总结提供了详实的数据支持。

2.2 碰撞检测与预防

在复杂的建筑项目中,不同专业的设计往往存在交

叉与重叠,如结构、管道、电气等专业间的协作。传统 的设计流程中,这些交叉点可能会产生设计冲突,导致 施工阶段的返工和浪费。而BIM技术的引入,特别是在 碰撞检测方面的应用, 为这一问题提供了有效的解决方 案。利用BIM技术进行碰撞检测,其核心在于利用三维 模型对建筑中的各个专业和系统进行空间上的分析和检 查。这一过程中, BIM软件能够精确地模拟出建筑中各构 件的空间位置,进而识别出潜在的冲突点。具体来说, 碰撞检测可以分为硬碰撞和软碰撞两种。硬碰撞指的是 两个或多个构件在空间上直接相交, 如管道穿过了结构 梁或柱。而软碰撞则是指构件之间虽然没有直接相交, 但空间距离过近,可能导致施工或维护时的困难。进行 碰撞检测时,设计师首先将各专业的BIM模型整合到一 起,然后运行碰撞检测工具。该工具会自动分析模型中 所有构件的空间关系,标记出所有潜在的冲突点,并生 成详细的碰撞报告。这份报告不仅会指出碰撞的具体位 置,还会提供碰撞的类型、严重程度以及可能的解决方 案。有了这份碰撞报告,设计师和施工团队就可以在施 工前对设计方案进行调整,从而避免潜在的冲突。这种 预防性的措施不仅可以减少施工过程中的返工和浪费, 还可以确保项目的顺利进行,提高整体的施工质量和效 率。值得一提的是, BIM技术还支持实时的碰撞检测。这 意味着每当设计方案发生变化时,设计师都可以立即运 行碰撞检测工具,确保新的设计没有引入新的冲突。

2.3 施工进度模拟与优化

在建筑结构管理中, 施工进度的把控是确保项目按 时交付的关键。BIM技术在这一环节发挥了重要作用, 通过模拟施工进度,项目管理者能够预测可能遇到的问 题,并据此优化施工计划,从而更好地把控项目进度。 利用BIM技术进行施工进度模拟,首先需要创建一个包含 时间信息的四维(4D)模型。这个模型不仅包含了建筑 物的三维几何信息,还融入了时间维度,使得每一个施 工阶段都能在建筑模型中得以体现。通过这种方式,项 目管理者可以直观地看到建筑物在各个时间节点的施工 状态。在模拟过程中, BIM软件能够根据预设的施工顺 序和时间表, 自动演示建筑的施工进程。这种可视化的 模拟方式有助于管理者更清晰地理解施工流程, 发现潜 在的问题区域。例如,某些施工阶段的作业空间可能受 限,或者不同专业之间的施工顺序需要更精细的协调。 基于模拟结果,项目管理者可以对施工计划进行优化。 他们可以调整施工阶段的顺序, 重新分配资源, 或者改 进施工方法,以确保项目能够更高效、更顺利地进行。 这种优化过程不仅考虑了时间因素,还综合考虑了成

本、质量和安全等多个方面。此外,BIM技术还支持实时的施工进度监控。通过将实际施工进度与模拟进度进行对比,项目管理者可以及时发现偏差,并采取相应措施进行调整。这种动态的管理方式使得项目团队能够更灵活地应对各种突发情况,确保项目能够按计划进行。

3 面临的挑战与对策

3.1 技术标准不一致

BIM技术,作为建筑业的前沿科技,正在全球范围内逐步推广。然而,其在应用过程中面临的一个显著挑战便是技术标准的不一致。由于不同国家和地区对BIM的认知深度和应用广度存在差异,导致了各自的技术标准有所不同。这种不一致性在跨国或跨区域的建筑合作项目中尤为明显,可能会引发数据格式不兼容、信息交换受阻以及协同工作流程的混乱。为了应对这一问题,建筑行业需要积极推动国际或地区间的技术标准统一化。这包括制定和推广通用的BIM数据交换标准、建模准则以及信息分类系统。通过标准化的努力,可以确保BIM模型在不同平台和软件间的顺畅交互,从而提高全球建筑项目的效率和协同性。此举不仅有助于减少因标准差异造成的沟通成本,还能加速BIM技术的全球普及和优化。

3.2 人员培训与成本

BIM技术的深入应用对建筑行业从业人员的技能要求较高,但目前行业内对BIM技术的熟练掌握者并不普遍。据行业内的相关统计数据显示,能够熟练运用BIM技术的专业人才占比仍然较低。这种情况限制了BIM技术在建筑行业的广泛和高效应用。为了提升人员的BIM技能,必须进行系统的培训,而这需要企业投入大量的时间和资金。从初级到高级的BIM技能培训,不仅涵盖软件操作,还包括BIM理念、协同工作流程等多方面内容。这样的培训投入对于许多企业来说是一项沉重的负担,尤其是在BIM技术应用的初期,高昂的培训成本往往成为企业采纳BIM的障碍。为了缓解这一问题,政府、企业和高校应加强合作,共同推动BIM教育的普及。政府可以提供政策

支持,企业通过实际项目提供实践机会,而高校则可以 在课程中加入BIM相关内容,从源头上提高新一代建筑从 业者的BIM技能水平。

3.3 软件兼容性与数据交互

当前市场上,众多BIM软件并存,如Revit、ArchiCAD、Tekla等,这些软件在功能和操作习惯上各有特点,但其兼容性和数据交互能力却存在差异。这种差异常常导致在项目协作中出现数据丢失、格式转换错误等问题。例如,当使用不同BIM软件的项目团队需要交换数据时,可能会因为软件不兼容而无法准确传递信息,这不仅影响了工作效率,还可能引发质量风险。为解决这一问题,应鼓励BIM软件开发商提高产品的开放性和兼容性。具体而言,可以通过开放API接口、支持多种数据格式导入导出等方式,来增强软件间的互操作性。同时,建筑行业应积极推动建立通用的数据交换标准,如IFC标准等,以确保信息能在不同软件间顺畅流通,从而提升项目协作效率和质量。

结语

BIM技术以其强大的信息集成和管理能力,为建筑结构设计与管理带来了显著的优化。它不仅提高了设计效率,还通过信息共享和协同工作促进了项目团队之间的有效沟通。未来,随着BIM技术的不断发展和完善,其在建筑行业的应用将更加广泛和深入。

参考文献

- [1]杜定发.建筑结构设计中BIM技术的应用探析[J].中国新通信,2020(23):112-113.
- [2]申晓宝.建筑结构设计中BIM技术的应用[J].中国住宅设施,2020(11):29-30.
- [3]赵连平.建筑工程结构设计中BIM技术的应用[J].工业建筑,2020(11):223.
- [4]罗嗣顺.BIM技术在建筑结构设计中的应用[J].建筑技术开发,2020(21):10-11.