浅谈水运结构实体检测

罗 蓉1 彭志勇2

- 1. 温州广通工程检测有限公司 浙江 温州 325000
- 2. 温州市交通工程试验检测有限公司 浙江 温州 325000

摘要:水运结构作为交通运输体系的重要组成部分,其安全性与耐久性直接关系到社会经济发展和人民生命财产安全。文章探讨了水运结构实体检测的重要性与优化策略。针对水运工程混凝土结构的安全性与耐久性,强调了检测工作的必要性,并提出了通过加强技术创新与应用、规范化检测流程与标准、提升检测设备与仪器性能等策略,以提升检测效率、准确性和可靠性。这些策略旨在确保水运结构实体检测的科学性、规范性和有效性,为水运工程的安全运行提供坚实保障。

关键词:水运结构:实体:检测

引言:随着水运工程规模的不断扩大和使用年限的增长,结构实体检测成为保障其安全运营的关键环节。本文旨在探讨水运结构实体检测的重要性、现状以及面临的挑战,并提出相应的优化策略,以此为水运工程的安全管理提供有益参考,确保水运结构长期稳定运行,促进水运事业的健康发展。

1 水运结构实体检测的重要性

水运结构实体检测直接关系到水运工程的安全性、 耐久性和整体质量。第一, 水运工程作为重要的基础设 施,承载着货物运输、人员往来等多重功能。其结构 的安全性直接关系到人民生命财产的安全和社会经济的 稳定发展。通过实体检测,可以及时发现混凝土结构中 的裂缝、腐蚀、钢筋锈蚀等潜在问题, 并采取相应的维 修和加固措施,从而有效避免结构破坏和安全事故的发 生。第二,水运结构实体检测是工程质量控制的重要环 节。通过对结构实体的全面检测,可以准确评估混凝土 结构的强度、耐久性等关键指标, 为工程质量的验收和 评定提供科学依据。同时, 检测过程中发现的问题和缺 陷,可以及时反馈给施工单位和设计单位,促使他们改 进施工工艺、优化设计方案,进一步提升工程质量。第 三,水运工程长期暴露在水环境中,容易受到各种因素 的侵蚀和破坏。通过定期的实体检测,可以及时发现并 处理结构中的损伤和病害,防止其进一步恶化[1]。这种 预防性维护措施可以显著延长工程的使用寿命,降低维 修成本,提高经济效益。第四,水运结构实体检测技术 的不断创新和发展, 为水运工程的安全和质量控制提供 了更加可靠的手段。随着科学技术的进步, 无损检测技 术、智能监测技术等先进技术的应用越来越广泛, 为水 运结构实体检测带来了更多的可能性和机遇。这些技术 的推广和应用,不仅提高了检测效率和精度,还促进了 水运工程技术的整体进步和发展。

2 水运结构实体检测存在的问题

2.1 检测技术和方法的局限性

水运结构实体检测技术和方法的局限性, 是当前水 运工程检测领域面临的一个重要问题。随着水运工程规 模的不断扩大和复杂性的增加,对检测技术和方法的要 求也越来越高。然而,现有的检测技术和方法在某些方 面仍存在明显的局限性。(1)传统的检测技术和方法往 往难以适应现代水运工程对检测精度和效率的高要求。 例如,目视检测和敲击检测等传统方法虽然简单易行, 但往往只能发现表面或较为明显的缺陷,对于隐蔽在结 构内部的裂缝、锈蚀等问题则显得力不从心。这种局限 性可能导致潜在的安全隐患被忽视, 进而影响整个工程 的安全性和耐久性。(2)现有的无损检测技术虽然能够 在不破坏结构的前提下进行检测,但其检测范围和精度 也受到一定限制。例如,超声波检测、雷达检测等技术 在某些情况下可能受到材料特性、结构形状等因素的影 响,导致检测结果出现偏差或误差。此外,这些技术往 往对操作人员的专业技能和经验要求较高,一旦操作不 当,就可能影响检测结果的准确性和可靠性。(3)随 着水运工程技术的不断发展,新材料、新工艺和新结构 不断涌现,这对检测技术和方法提出了更高的要求。然 而,目前针对这些新材料、新工艺和新结构的检测技术 和方法还不够成熟和完善,难以满足实际检测需求。这 可能导致部分水运工程在建设和运营过程中存在检测盲 区或漏检现象, 进而增加工程的安全风险。

2.2 检测过程的不规范性和随意性

在水运结构实体检测过程中, 部分检测人员可能因

为对标准理解不透彻、操作习惯不良或赶工期等原因, 忽视了标准中的关键环节和步骤,导致检测过程不规 范。这种不规范性不仅会降低检测结果的准确性,还可 能对结构造成不必要的损伤。另外, 检测记录是反映检 测过程和结果的重要依据,但部分检测人员可能存在记 录不完整或不准确的问题。例如, 检测数据记录不全、 记录格式不规范、记录信息错误或遗漏等。这些问题不 仅会影响检测结果的追溯和分析, 还可能给后续工作带 来困扰。再者,检测设备是检测工作的重要工具,其使 用状况直接影响检测结果的准确性。然而, 在实际检测 过程中, 部分检测人员可能存在对设备性能不了解、操 作不熟练或维护不当等问题。这些问题可能导致设备性 能下降、检测结果失真或设备损坏等后果。除了上述因 素外,人为因素的干扰也是导致检测过程不规范和随意 性的重要原因之一。例如, 部分检测人员可能因为个人 利益或外界压力等原因,故意隐瞒或篡改检测结果。这 种行为不仅严重违反了职业道德和法律法规,还可能对 水运工程的安全性和耐久性造成严重后果。

2.3 检测设备和仪器的落后与不足

水运结构实体检测中,检测设备和仪器的落后与不 足是一个显著的问题,这不仅影响了检测结果的准确性 和可靠性,也制约了水运工程质量的提升。随着水运 工程建设的不断发展,对检测设备和仪器的要求也在不 断提高。然而, 部分检测机构或施工单位由于资金、技 术等方面的限制,仍然使用着老旧、性能下降的检测设 备和仪器。这些设备在精度、稳定性、耐用性等方面已 无法满足现代水运工程检测的需求,导致检测结果存在 偏差,甚至可能遗漏重要的安全隐患。另外,新型的检 测设备和技术层出不穷,如高精度传感器、远程监控系 统、智能化检测平台等。这些新型设备和技术能够显著 提高检测效率和准确性,降低人为误差。然而,由于成 本高昂、技术复杂等原因, 部分检测机构或施工单位在 引进和使用这些新型设备和技术方面存在困难,导致检 测手段相对落后。检测设备和仪器的性能直接影响检测 结果的准确性。然而, 在实际使用过程中, 部分检测机 构或施工单位对设备的维护和校准工作重视不够、导致 设备性能下降、精度降低[2]。例如,未能按照规定的周 期对设备进行校准、未能及时更换损坏的部件、未能对 设备进行有效的清洁和保养等。这些问题都会影响检测 结果的准确性和可靠性。最后, 部分检测机构或施工单 位在设备配置方面存在不足,缺乏全面性和系统性。例 如,对于某些特定的检测项目或检测部位,可能缺乏相 应的检测设备和仪器;或者即使拥有相关设备,但由于 数量不足或性能不佳等原因,无法满足检测需求。

3 水运结构实体检测优化策略

3.1 强化技术创新与应用

随着材料科学、信息技术及人工智能等领域的飞速 发展, 水运结构实体检测应积极探索并应用新技术。例 如,利用高精度传感器技术,如光纤传感器、压电传 感器等,实现对结构内部微小变化的实时监测;结合图 像处理与机器学习算法,开发智能裂缝识别系统,提高 裂缝检测的准确性和效率;引入无人机搭载高清相机或 红外热成像仪进行远程检测, 克服传统检测手段难以触 及的难题。智能化是水运结构实体检测的未来趋势。通 过集成物联网、大数据、云计算等先进技术,构建智能 检测平台,实现检测数据的实时采集、传输、处理与分 析。智能平台能够根据历史数据和实时监测结果,预测 结构性能变化趋势,提前发现潜在问题,为维修加固提 供科学依据。同时,智能平台还能实现检测任务的自动 化分配与管理,提高检测工作的组织效率和响应速度。 水运结构实体检测涉及土木工程、材料科学、信息技术 等多个学科领域。为了推动技术创新与应用,需要加强 跨学科合作与技术融合。通过组建跨学科研究团队,整 合各方资源,共同攻克检测领域的技术难题。例如,结 合材料科学的研究成果, 开发针对特定材料或结构的专 用检测技术和设备;利用信息技术手段,优化检测流程 和数据管理方式,提高检测工作的整体效能。技术创新 的最终目的是服务于实践。因此,需要建立健全的技术 成果转化机制,加速将实验室研究成果转化为实际应用 中的检测技术和设备。同时,通过举办技术交流会、培 训班等活动,加强技术成果的宣传和推广工作,提高水 运工程领域对新技术、新设备的认知度和接受度。

3.2 规范化检测流程与标准

针对水运结构实体检测的优化策略,规范化检测流程与标准是提高检测质量和效率的重要途径。

3.2.1 制定详细且统一的检测流程

明确检测目标与范围:首先,应明确检测的具体目标和所需覆盖的范围,确保检测工作全面、无遗漏。这包括确定检测对象、检测内容、检测方法和检测标准等。细化检测步骤:将检测流程细化为具体的操作步骤,包括检测前的准备工作、检测过程中的数据采集与记录、检测后的数据处理与分析等。每一步骤都应有明确的操作指南和注意事项,确保检测人员能够按照统一的标准进行操作。设置质量控制点:在检测流程中设置关键的质量控制点,对检测过程进行监督和检查。这些质量控制点可以是检测数据的准确性验证、检测设备的

校准与维护等,以确保检测结果的可靠性。

3.2.2 完善检测标准与规范

依据相关标准与行业标准:水运结构实体检测应严格遵循国家相关标准和行业标准,如《水运工程混凝土结构实体检测技术规程》等。这些标准规范了检测的内容、方法、要求以及结果的判定等,为检测工作提供了科学依据。制定企业内部标准:在遵循国家和行业标准的基础上,水运工程相关企业还可以根据自身特点和需求,制定更为详细和具体的企业内部标准。这些标准可以针对特定工程或特定部位进行细化,以提高检测的针对性和有效性。定期修订与更新标准:随着科技的发展和工程实践的深入,检测标准和规范也需要不断更新和完善。企业应定期收集新技术、新方法和新经验,对原有标准进行修订和补充,以确保检测工作的先进性和适用性。

3.2.3 加强检测人员培训与考核

定期培训:对检测人员进行定期培训,提高他们的专业技能和操作水平。培训内容可以包括最新的检测技术、检测标准与规范、设备操作与维护等。严格考核:建立严格的考核机制,对检测人员的技能水平和操作规范进行考核。只有考核合格的人员才能从事检测工作,以确保检测结果的准确性和可靠性。

3.3 提升检测设备与仪器的性能

随着科技的飞速发展,水运结构实体检测领域不断 涌现出新技术和新设备。为了提升检测效率与准确性, 应积极引入高精度、高灵敏度的检测设备与仪器。例如,采用先进的超声波检测仪、电阻率检测仪、磁感应检测仪等,这些设备能够更精准地识别混凝土结构中的 缺陷、裂缝及腐蚀等问题。同时,结合自动化、智能化技术,实现检测数据的实时传输与处理,提高检测工作的整体效能。设备的维护与校准是保持其性能稳定、延长使用寿命的关键。应建立完善的设备维护与校准制度,定期对检测设备进行全面的检查、保养和校准。通

过专业的校准机构和人员,对设备的各项性能指标进行 精确测定,确保检测数据的准确性和可靠性。此外,还 应加强设备的使用管理,规范操作流程,避免因不当使 用导致的设备损坏或性能下降。鼓励和支持科研机构和 企业加大研发投入,开展设备技术创新与升级工作。通 过引进国际先进技术、消化吸收再创新等方式,不断提 升检测设备的性能水平[3]。同时,加强与高校、科研院 所等单位的合作与交流,共同攻克技术难题,推动检测 技术的快速发展。建立健全的设备管理制度,明确设备 的采购、验收、使用、维护、报废等各个环节的管理要 求。同时,加强对检测人员的培训与教育,提高他们的 专业技能和操作水平。通过举办培训班、技术交流会等 活动,促进检测人员之间的经验分享与交流,提升整个 行业的检测技术水平。通过引入先进技术与设备、加强 设备维护与校准、推动设备技术创新与升级以及强化设 备管理与应用培训等措施的实施,可以显著提高检测设 备的性能水平, 为水运结构的安全运行提供有力保障。

结语

总之,水运结构实体检测是确保水运工程安全、提升结构耐久性的重要手段。面对日益复杂的水运工程环境和不断提升的安全要求,我们需要不断创新检测技术、规范检测流程、提升设备性能并强化数据分析,以全面提升水运结构实体检测的质量和效率。通过持续努力,能够为水运工程的安全运行提供更加坚实的技术支撑,推动水运事业向着更加安全、高效、可持续的方向发展。

参考文献

[1]黄文旭.探究建筑工程实体结构质量检测方法及其应用[J].建材与装饰,2020(20):40+42.

[2]尹向东.建筑工程实体结构质量检测的有效措施[J]. 四川建材,2020(7):20~21+23.

[3]孔繁榕.探究建筑工程实体结构质量检测方法及其应用[J].居舍,2019(24):42+60.