生态水利在河道治理工程中的重要性研究

柳云彤

河北省水利水电勘测设计研究院集团有限公司 天津 300202

摘要:生态水利在河道治理工程中占据核心地位,通过恢复水生生物与植被,实现生态平衡,增强水体自净能力。该理念强调人与自然和谐共生,有效缓解传统治理方式带来的生态破坏。科学规划与实施生态水利措施,不仅能提升河道防洪排涝能力,还能促进水资源可持续利用,保障流域内生态安全与经济社会协调发展。

关键词: 生态水利; 河道治理工程; 重要性

引言:随着环境问题的日益凸显,河道治理成为维护生态平衡的关键。传统治理方式往往忽视生态影响,导致生态系统受损。生态水利作为新兴理念,强调在治理中融入生态保护,旨在恢复河道自然功能,提升生态系统稳定性。本研究深入探讨生态水利在河道治理中的重要性,为构建可持续的水利工程提供理论支持与实践指导。

1 生态水利概述

生态水利是对水资源科学利用的一种途径和方式, 它以尊重和维护生态环境为主旨,旨在通过合理开发水 利资源,促进经济社会的持续发展。生态水利不仅仅 关注水资源的开发和利用, 更强调在开发利用过程中保 护生态环境,实现水资源的可持续利用。第一,生态水 利是一个长期的、庞大的系统工程,需要现代科学技术 尤其是生物科学技术的支撑, 并以雄厚的经济实力为基 础。其终极目标是建成自动化生态水利系统,以应对洪 涝灾害、提供人畜饮水安全保障,并确保农作物的丰 收。因此,生态水利被誉为农业丰收的"保护神"。第 二,在生态水利的实践中,需要遵循生态平衡原则,全 面系统研究和正确处理水资源开发、利用、保护、管 理、经营和生态环境之间的相互关系。这包括大气水、 地表水、土壤水、地下水以及雨水、污水资源化的统 筹,水量水质并重,开源节流并重,点污染源和非点污 染源齐抓, 上下游、左右岸兼顾, 以及当前和长远利益 的结合。第三,生态水利的实施要求用生态学的基本观 点来指导水利规划、设计、建设和管理, 确保水利工程 在促进经济发展的同时,不破坏生态环境[1]。例如,在 水利设计过程中, 应充分考虑水利工程与生态环境之间 的关系, 使设计出的生态水利工程更加科学合理, 契合 实际; 在利用水资源的同时, 要注意节约, 不破坏水资 源的自我恢复功能,进而保障水资源的质量与安全。生 态水利是人类文明发展到生态文明时代的水资源利用方

式,它以实现绿色、健康、有机发展为目标,是经济社 会可持续发展的重要保障。

2 生态水利在河道治理中的重要性

2.1 恢复河道生态系统

生态水利在河道治理中的重要性不言而喻, 其中恢 复河道生态系统是其核心目标之一, 也是体现其深度与 广度的重要方面。一方面,河道作为水生态系统的重要 组成部分,承载着丰富的生物多样性,包括水生植物、 动物以及微生物等。然而,随着人类活动的不断加剧, 河道生态系统面临着前所未有的挑战,如水体污染、河 流形态改变、植被破坏等,导致生物多样性锐减,生态 系统功能退化。另一方面, 生态水利在河道治理中的应 用,旨在通过一系列科学合理的措施,恢复河道的自然 形态和生态功能,从而构建一个健康、完整、稳定的河 道生态系统。这不仅有助于提升河道的水质,改善水体 环境,还能为水生生物提供适宜的栖息地和繁殖场所, 促进生物多样性的恢复。生态水利在恢复河道生态系统 方面,可以通过建设生态河堤、推广自然化河流建设、 恢复退化河岸带等方式来实现。生态河堤能够保护河岸 植被,提高河水的自净能力;自然化河流建设则能够保 留河道的蜿蜒性,增加水体容量,为生物提供更多的生 存空间; 而恢复退化河岸带则可以通过种植本土植物, 构建生态缓冲带,减少水土流失,保护河道生态环境。

2.2 提升防洪排涝能力

生态水利在河道治理中的重要性,不仅体现在恢复河道生态系统方面,还显著地提升了防洪排涝能力,这是保障人民生命财产安全、促进经济社会可持续发展的重要举措。(1)科学规划与综合治理。生态水利强调在河道治理中的科学规划与综合治理,通过系统的工程措施和非工程措施,全面提升河道的防洪排涝能力。这包括对河道进行清淤疏浚,扩大行洪断面,提高河道的过流能力;同时,通过建设生态堤防、护岸等工程,增强

河道的抗洪能力,减少洪水对周边地区的威胁。(2)生 态修复与功能提升。在生态水利的实践中, 注重通过生 态修复手段恢复河道的自然形态和功能,从而提升其防 洪排涝能力。例如,通过种植水生植物、构建湿地系统 等措施,增加河道的蓄水能力,减少洪峰流量,同时利 用湿地系统的净化作用,改善水质,保护生态环境。这 些措施的实施,不仅提升了河道的防洪排涝能力,还促 进了水资源的可持续利用。(3)智慧化管理与应急响 应。随着科技的不断进步,生态水利还注重将智慧化手 段应用于河道治理中。通过建立河道监测预警系统、智 能调度系统等,实现对河道水情、雨情的实时监测和预 警,提高防洪排涝的应急响应能力。同时,利用大数据 分析等技术手段,对河道治理效果进行评估和优化,不 断提升防洪排涝的智能化水平。以河曲县为例,该县在 黄河流域生态环境整治攻坚中,大力实施河道综合治理 工程建设,通过清理河道淤泥、平整河道主槽、修整边 坡、绿化两岸等治理方法,显著提升了河道的防洪排涝能 力。同时,通过实施一系列综合治理工程,如岸线生态环 境整治、初期雨水沉淀池建设等,与堤防工程形成有机 统一的防洪体系,为全县的防洪安全提供了坚实保障。

2.3 促进水资源循环利用

生态水利在河道治理中的重要性不仅体现在恢复河 道生态系统和提升防洪排涝能力上,还深刻地促进了水 资源的循环利用,这是实现水资源可持续利用、构建生 态文明社会的重要途径。

2.3.1 生态水利与水资源循环利用的紧密联系

生态水利强调在河道治理中融入生态理念,通过构建生态水利工程,实现水资源的合理调配和高效利用。这一理念与水资源循环利用的目标高度契合,即通过科学的管理和技术手段,提高水资源的重复利用率,减少浪费,保护水资源不受污染。

2.3.2 提升水资源利用效率

生态水利在河道治理中,通过优化河道设计、建设 生态堤防、修复湿地等措施,提升了河道的自净能力和 蓄水能力。这些措施不仅改善了水质,还增加了水资源 的可利用量。同时,生态水利还注重雨洪资源的利用, 通过建设雨水收集系统、雨水花园等设施,将雨水转化 为可利用的水资源,进一步提高了水资源的利用效率。

2.3.3 构建水资源循环利用体系

生态水利在河道治理中,还积极推动水资源循环利用体系的构建。这包括建立水资源循环利用的法律法规和政策体系,明确水资源循环利用的目标和任务;加强水资源循环利用的技术研发和推广,提高水资源循环

利用的技术水平;以及加强水资源循环利用的宣传和教育,提高公众的水资源节约和保护意识。通过这些措施的实施,构建了一个完整的水资源循环利用体系,为水资源的可持续利用提供了有力保障。

2.4 实现经济效益与环境效益双赢

生态水利在河道治理中的重要性不仅体现在恢复生 态系统、提升防洪排涝能力和促进水资源循环利用等方 面,还显著地实现了经济效益与环境效益的双赢。(1) 经济效益的提升。降低治理成本:生态水利通过采用自 然化、生态化的治理手段,如生态护岸、湿地建设等, 减少了传统硬质工程材料的使用,从而降低了河道治理 的初始建设成本和后期维护成本。促进产业发展:生态 水利治理后的河道, 水质得到显著改善, 生态环境得到 恢复,为周边地区的水产养殖、生态旅游等产业提供 了良好的发展条件,促进了当地经济的多元化发展。提 升土地价值:随着河道生态环境的改善,周边土地的价 值也会相应提升, 为土地开发和利用带来更多的经济效 益。(2)环境效益的彰显。改善水质:生态水利通过构 建生态净化系统,如湿地净化、植物吸收等,有效去除 了水体中的污染物,提升了水质,保障了水资源的可持 续利用。恢复生物多样性:河道治理后,生态环境得到 改善, 为水生生物提供了更适宜的栖息环境, 促进了生 物多样性的恢复和繁衍。美化环境:生态水利注重与周 边环境的协调与融合,通过合理的规划和设计,使河道 成为城市或乡村的一道亮丽风景线,提升了居民的生活 品质。(3)双赢的实现。生态水利在河道治理中,通过 科学合理的规划和设计, 既实现了经济效益的提升, 又 彰显了环境效益的改善,二者相互促进、相辅相成。这 种双赢的局面不仅有利于当地经济社会的可持续发展, 还有利于生态环境的保护和修复, 为构建生态文明社会 奠定了坚实基础。

3 生态水利在河道治理工程中的具体应用

3.1 构建生态化河堤与护岸

生态化河堤与护岸是一种结合了生态学和水利工程学的设计理念,旨在通过模拟自然河道的形态和功能,构建出既能满足防洪排涝要求,又能促进生态系统恢复与平衡的河道护岸形式。这种护岸形式不仅注重工程的稳定性和安全性,还强调与周围环境的和谐共生。生态化河堤与护岸的构建应尊重自然规律,尽量保持河道的自然形态和生态功能,减少对生态系统的干扰和破坏。根据不同地区的地质、水文、气候等条件,选择适合的生态化河堤与护岸类型,确保工程的可行性和有效性。在构建过程中,应优先考虑生态系统的恢复与保护,通

过种植植被、构建湿地等方式,提升河道的生态功能[2]。 采用天然植被或天然石料进行护岸, 保持河道的自然形 态和生态功能。这种方法适用于水流较缓、冲刷作用较 弱的河段。在天然植被或石料的基础上,结合人工种植 植被或构建小型湿地等方式,提升河道的生态功能。这 种方法适用于水流较急、冲刷作用较强的河段。采用人 工材料(如生态砖、生态格网等)构建护岸结构,并在 其上种植植被,模拟自然河道的形态和功能。这种方法 具有较高的灵活性和适应性, 可以适用于各种复杂的河 道环境。生态化河堤与护岸通过增加植被覆盖、构建湿 地等方式,提高了河道的蓄水能力和渗透性,有助于降 低洪峰流量、延缓洪水过程线, 从而提升防洪排涝能 力。为水生生物提供了适宜的栖息环境,促进了生物多 样性的恢复和繁衍。同时,通过植被的净化作用和水土 保持功能,改善了河道的水质和生态环境。与周围环境 和谐共生,形成了独特的自然景观。这种景观不仅美化 了城市或乡村的环境,还提升了居民的生活品质。

3.2 实施生态疏浚与增氧曝气

生态水利在河道治理中,具体实施的生态疏浚与增 氧曝气技术,是深度优化河道生态环境的关键措施。该 技术通过精细规划的疏浚作业,精准清除河道淤积,减 少底泥污染物释放,同时保持河道自然形态,减少对生 态的破坏。在疏浚过程中,融入生态修复理念,如即时 补植水生植物,构建生态缓冲带,以加速生态系统自我 恢复。而增氧曝气技术,则是通过向水体中高效注入氧 气,显著提升水体溶解氧含量,促进水体中有机物的分 解与污染物的降解,有效缓解水体富营养化问题。这一 过程不仅增强了水体的自净能力,还为水生生物提供了 更加适宜的生存环境,促进了生物多样性的恢复。两者 相结合, 生态疏浚为增氧曝气创造了良好的水体条件, 而增氧曝气则加速了疏浚后生态系统的重建与恢复,形 成了相互促进的良性循环。这种深度整合的治理方式, 不仅能够有效提升河道水质,还促进了河道生态系统的 全面恢复, 为构建健康、可持续的河道环境提供了有力 支持。

3.3 利用水生生物与植被恢复生态系统

在河道治理工程中, 生态水利的具体应用之一是利 用水生生物与植被来深度恢复生态系统。这一策略不仅 遵循了自然演替规律,还充分利用了生物间的相互作 用,以达到生态平衡与自我维持的目标。通过科学选 择与合理搭配水生植物,如沉水植物(如苦草、金鱼 藻)、浮叶植物(如睡莲)等,这些植物能够有效吸收 水体中的氮、磷等营养物质,降低水体富营养化程度, 并通过其庞大的根系和枝叶形成天然的过滤层, 吸附、 分解或转化水中的污染物质,提升水质。同时,水生植 物还能为微生物提供附着基质和栖息场所, 促进微生物 对污染物的降解,进一步增强水体的自净能力[3]。另外, 引入或恢复水生动物种群,如鱼类、贝类等,这些生物 在水体中扮演着重要的角色。它们通过摄食藻类、有机 碎屑等,控制水体中的藻类过度繁殖,防止水体富营养 化,水生动物的排泄物和残体也是水体中营养物质的重 要来源,为水生植物的生长提供了必要的养分。水生动 物的活动还能搅动水体,增加水体中的溶解氧含量,为 水生生物提供更加适宜的生存环境。通过科学规划与合 理实施,这一策略能够显著提升河道的水质和生态环境 质量,实现生态系统的自我维持与平衡。

结语

总之,生态水利在河道治理工程中展现出不可替代的重要性。它不仅有效解决了传统治理方式带来的生态问题,还促进了水资源的可持续利用和生态系统的全面恢复。未来,应继续深化生态水利研究,推动其在河道治理中的广泛应用,为构建生态文明、实现人与自然和谐共生贡献力量。

参考文献

[1]赵超.生态水利在河道治理工程中的应用研究[J].黑龙江水利科技,2019,45(05):62-63+96.

[2]任华群.生态水利设计理念在城市河道治理工程中应用[J].城市建设理论研究(电子版),2020(06):176-177.

[3]郭振华.生态水利在河道治理工程中的应用研究[J]. 中小企业管理与科技(下旬刊),2019(08):195-196.