给排水及暖通工程施工质量控制思考分析

刘英东

河北建设集团股份有限公司北京分公司 北京 102600

摘 要:本文分析了给排水工程项目建设质量控制中的常见问题,包括施工设计缺陷、施工进度控制不力及安装工程质量问题。针对这些问题,提出了给排水及暖通工程施工质量的控制策略。在给排水施工方面,强调了材料检验、管道控制及后期管理的重要性;而暖通工程则注重细化图纸设计、材料管理及施工进度控制。这些策略旨在全面提升给排水及暖通工程的施工质量,确保项目顺利进行并满足规范要求。

关键词:给排水;暖通工程;施工质量;控制思考

引言

随着城市化进程的加快,给排水及暖通工程作为建筑配套设施的重要组成部分,其施工质量直接关系到建筑物的使用功能与居民的生活质量。在实际施工过程中,给排水及暖通工程常面临施工设计不合理、进度控制困难及安装质量不达标等问题。这些问题不仅影响工程进度,还可能造成安全隐患。因此,加强给排水及暖通工程施工质量的控制与管理,对于提升建筑整体品质具有重要意义。本文将从施工设计与材料管理、施工进度控制等方面,探讨给排水及暖通工程施工质量的控制策略。

1 给排水工程项目建设质量控制存在的问题

1.1 施工设计存在的问题

设计交底不仅是设计师向施工单位解释设计意图、 技术要求及关键节点的过程, 也是双方就设计细节进行 深度沟通、发现并解决问题的关键时机。若交底不充 分,可能导致以下问题:施工单位可能无法全面理解设 计意图,特别是对一些复杂节点或特殊要求的处理上, 容易出现误解或遗漏, 进而影响施工质量。各专业之间 (如建筑、结构、给排水、电气等)的协调不足,未能 在交底阶段明确各自的施工界面和先后顺序,容易导致 后续施工中出现管线冲突、空间占用不当等问题。未能 提前识别并讨论潜在的设计风险, 如地质条件变化、材 料供应问题等,使得项目在面对突发情况时缺乏应对预 案。图纸会审作为设计交底后的又一重要环节,旨在通 过多方审查发现并纠正图纸中的错误、遗漏及不合理之 处。各专业图纸之间缺乏有效协调,导致管线布置相互 冲突, 如给排水管道与电气线路在同一空间内交叉重 叠,影响使用功能和安全。图纸中对一些关键细节(如 预留孔洞位置、尺寸、标高)的标注不明确或遗漏,使 得施工人员无法准确施工,造成返工和材料浪费。如洁 具、灯具等设备的规格型号未在设计阶段明确,导致预留孔洞尺寸不符,后期需进行破坏性改造,影响美观和防水性能。

1.2 施工进度控制的问题

若施工计划未能有效协调各专业间的施工顺序,可 能导致某些工序在时间上或空间上发生冲突, 如电气线 路铺设与墙体砌筑同时进行,造成相互干扰,无法按计 划完成。施工计划不合理还可能导致劳动力、机械设备 等资源的分配不均, 部分区域或工序资源过剩, 而另一 部分则资源短缺,影响整体施工效率[1]。僵化的施工计 划难以应对现场实际情况的变化,如天气因素、设计变 更等,导致计划执行过程中频繁调整,降低了施工管理 的效率。材料作为施工的基础,其供应的及时性和质量 直接关系到施工进度的快慢和工程质量的好坏。材料供 应不及时, 主要源于未能根据项目需求制定合理的材料 采购计划,导致采购量与施工进度不匹配,出现材料短 缺或积压的情况。对供应商的选择、评估及合同管理不 严,可能导致供应商供货不及时、质量不达标等问题。 材料进场后的报验流程复杂、耗时,若管理不善,会延 误材料的投入使用时间。施工现场的库存管理混乱,未 能有效监控材料的库存量和使用情况,导致材料浪费或 短缺。

1.3 安装工程的质量问题

若管道在敷设过程中缺乏统一的规划和布局,随意穿越墙体、楼板而不设置必要的套管或保护措施,不仅影响室内空间的使用,还可能因管道受到挤压、碰撞而损坏,增加维修难度和成本。此外,混乱的管道布局还可能影响其他专业的施工,如电气线路、暖通管线的布置,造成相互干扰。在管道穿越墙体、楼板或地面时,应使用过桥弯等配件确保管道能够平滑过渡,避免直接裸露在外或低于地面,以减少被踩踏、碰撞的风险。若

未遵循此规范,管道易受损,且可能影响室内美观和通行安全。管道支架是支撑管道、保证其稳定运行的重要设施。若支架安装不牢固,可能导致管道在运行过程中发生晃动、位移甚至脱落,不仅影响系统的正常运行,还可能造成安全事故。管道连接处的丝接质量直接关系到连接的密封性和耐久性。若丝接前未对接口进行彻底清理,去除油污、铁锈等杂质,或丝接后未进行必要的防腐处理,可能导致接口处漏水、锈蚀,缩短管道使用寿命。

卫生洁具作为建筑内部的重要设施,其安装质量直接关系到用户的舒适度和使用体验。安装不规范的洁具不仅影响美观,还可能引发漏水、松动等问题^[2]。若洁具在安装过程中未使用合适的固定件或固定不牢固,可能导致洁具在使用过程中发生晃动、倾斜甚至脱落,给用户带来安全隐患。排水出口与排水管之间的连接是防止漏水的关键环节。若连接处未使用密封材料或密封不严,可能导致水从连接处渗出,不仅影响使用,还可能对地面、墙面造成损害。此外,长期漏水还可能引发潮湿、霉变等问题,影响室内空气质量。

设备选型是确保建筑工程顺利运行的重要环节。若设备选型不当,可能导致设备在运行中无法满足设计要求,甚至引发故障。水泵是给排水系统中的关键设备,其选型应根据系统的流量、扬程等参数进行确定。若选型过小,可能无法满足系统的正常需求;若选型过大,则会造成能源浪费和设备成本的增加。此外,不同类型的水泵(如离心泵、潜水泵等)适用于不同的工况,选型时还需考虑具体的使用环境和条件。阀门在管道系统中起到控制流量、调节压力、切断介质等作用。若阀门选型不当,可能导致阀门在使用中无法达到预期的效果,如密封不严、操作不灵活等。此外,不同类型的阀门(如闸阀、截止阀、球阀等)具有不同的特性和适用范围,选型时需根据具体需求进行确定。

2 给排水及暖通工程施工质量的控制策略

2.1 给排水施工质量控制方案

2.1.1 加强对施工材料的检验及控制

所有即将进入施工现场的管材、构配件、设备及其他原材料,均需提前进行详尽的进场报验流程。这一流程包括但不限于提交供应商资质证明、产品合格证书、质量检测报告等关键文件,确保每一批材料都有据可查,来源清晰。在材料到达工地后,由专业的质检人员依据国家相关标准、行业规范及项目特定的技术要求,进行现场抽样检验与复验。这包括对材料的外观质量、尺寸规格、物理化学性能等多方面的检查,确保所有指

标均满足设计要求及安全标准。对于检验过程中发现的 不合格材料,立即进行隔离标识,并依据既定程序进行 退换货处理,同时记录相关信息,为后续供应商评价与 选择提供参考^[3]。

通过市场调研、行业评价、过往合作经验等多种渠 道,筛选出生产工艺先进、质量管理体系完善、市场口 碑良好的供应商作为合作伙伴。重点考察其生产能力、 技术实力、售后服务等方面,确保所供材料品质可靠。 在材料选型时,严格遵循国家及行业颁布的相关标准与 规范,确保所选材料的材质、性能、规格等关键指标均 达到或超过标准要求。同时,根据项目实际需求,考虑 材料的耐用性、环保性、经济性等综合因素, 力求最优 选择。在材料选型过程中,与设计单位保持密切沟通, 确保所选材料不仅满足国家及行业标准,还能充分满足 项目设计意图与功能需求。通过双方的紧密合作,共同 提升项目的整体品质与性能。建立供应商动态管理机 制,定期对供应商的产品质量、交货期、售后服务等方 面进行综合评估。对于表现优异的供应商给予表彰与激 励,对于存在问题的供应商则采取相应措施督促改进, 确保材料供应链的稳定与高效。

2.1.2 完善给排水管道控制策略

在给排水管道系统的安装过程中,质量控制是确保 系统性能与使用寿命的关键。在预埋阶段,应组织专业 技术人员对预留孔洞的位置进行精确测量与复核,确保 其符合设计图纸要求,避免因位置偏差导致的安装困难 或性能问题。同时,对预留孔洞的尺寸进行严格把控, 确保管道能够顺畅穿越且周围有足够的空间进行密封处 理。安装阶段,则需加强现场巡视检查的力度与频率, 建立详细的巡查记录制度,以便及时发现并纠正施工人 员的违章操作行为,如未按设计图纸施工、使用不合格 材料、忽视施工细节等,确保每一道工序都严格按照设 计要求与施工规范进行。为确保给排水管道系统的安装 质量,必须严格执行国家及行业颁布的相关施工规范。 这包括但不限于管道坡度的合理设置, 以确保水流顺 畅、无倒坡现象; 支架位置的精确布置, 既要满足支撑 强度要求, 又要考虑美观与空间利用; 法兰连接的密封 性检查, 防止漏水现象的发生[4]。此外, 还应注重施工过 程中的细节处理,如管道接口的清理、密封材料的选用 与涂抹等,确保每一个细节都符合规范要求,从而全面 提升管道系统的整体质量。

2.1.3 后期的工程管理方案

在给排水管道系统安装完毕后,应立即采取有效措施对成品进行保护。具体而言,应对洁具、地漏、落水

口排水管等易受损部位进行覆盖保护, 防止施工过程 中产生的建筑垃圾、水泥砂浆等异物落入而造成堵塞。 同时,还应设置警示标志或围挡,提醒施工人员注意保 护成品,避免不必要的损坏。通过加强成品保护,可以 确保给排水管道系统在投入使用前保持完好状态, 为后 续的正常使用打下坚实基础。给排水管道系统投入使用 后,应定期进行维护和检查工作。这包括对管道系统的 整体运行状况进行评估,检查是否存在漏水、堵塞等异 常情况;对关键部件如阀门、水泵等进行性能检测,确 保其处于良好工作状态;对管道支架、法兰连接等部位 进行紧固与密封性检查, 防止因松动或老化而导致的安 全隐患。此外,还应根据系统使用情况与水质变化等因 素,制定针对性的维护计划与保养措施,确保系统能够 长期稳定运行。通过定期维护和检查工作的实施,可以 及时发现并处理潜在问题,延长管道系统的使用寿命, 提高整个给排水系统的运行效率与安全性。

2.2 暖通工程的施工质量管理

2.2.1 细化图纸设计方案

在暖通工程的项目管理中,图纸设计方案的细化是确保施工顺利进行的基础。首先,加强图纸会审环节至关重要。这一阶段不仅需要暖通工程师的深入参与,还需邀请建筑、结构、电气等其他专业的工程师共同参与,通过多学科交叉审核,确保各专业间的管线布局合理,避免在施工过程中出现管线交叉冲突、空间占用不当等问题。此外,图纸会审还需注重细节,如设备间的间距、检修通道的设置、安全出口的位置等,都应充分考虑并作出合理安排。在图纸上,设备基础尺寸应精确无误,预留孔洞位置需清晰标注,标高坐标也应详细列出,以便施工人员准确施工。同时,对于特殊部位或复杂节点,应提供详细的剖面图、大样图等辅助说明,确保施工人员能够全面理解设计意图,减少因理解偏差导致的施工错误。

2.2.2 加强对施工材料的管理

施工材料的质量直接影响暖通工程的整体品质。因此,严格材料验收是施工管理的首要任务。所有进场材料均需经过严格的质量检验,包括外观检查、性能测试、合格证验证等多个环节,确保材质和性能均符合设计要求及国家相关标准。对于不合格材料,应坚决予以

退换,杜绝使用。在材料的储存和使用过程中,同样需要加强管理。材料应分类储存于干燥、通风、防雨防潮的环境中,避免损坏和污染。同时,建立材料领用制度,明确材料使用量和用途,确保材料使用合理,避免浪费^[5]。在施工过程中,应严格按照施工规范进行材料安装和连接,确保施工质量。

2.2.3 加强对施工进度的控制

施工进度的控制是暖通工程管理的重要内容。为了确保项目按时完成,需制定科学合理的施工计划。在制定计划时,需充分考虑各专业间的协调配合和材料供应情况,合理安排施工顺序和工期。同时,还需预留一定的缓冲时间以应对可能出现的突发情况。加强进度监控是确保施工计划顺利执行的关键。应定期检查施工进度与计划是否一致,及时发现并解决影响进度的因素。对于进度滞后的部分,应分析原因并采取措施进行补救;对于可能影响后续施工进度的因素,应提前预警并制定相应的预防措施。此外,还需加强与业主、监理单位等相关方的沟通协调,确保各方对施工进度的理解一致,共同推动项目顺利进行。

结束语

综上,通过加强施工设计审查、材料检验与管道控制,以及细化图纸设计、严格施工进度管理,可以有效提升给排水及暖通工程的施工质量。同时,加强后期的工程管理与维护,也是保障工程长期稳定运行的重要措施。随着科技的不断进步和管理水平的提升,我们相信给排水及暖通工程的施工质量控制将更加科学、高效,为城市建设和居民生活带来更多便利与保障。

参考文献

- [1]王俊达.给排水暖通工程项目建设质量控制策略分析[J].现代物业(中旬刊),2018(12):51.
- [2]赵晓娜.暖通工程施工的关键分析及技术改善探讨 [J].建材与装饰,2020(05):209-210.
- [3]代红.建筑暖通施工技术要点与质量控制[J].住宅与房地产,2020(23):109-110.
- [4]张海峰.暖通空调工程现场施工难点与优化途径[J]. 大众标准化,2020(09):59-60.
- [5]赵晓娜.暖通工程施工的关键分析及技术改善探讨[J].建材与装饰,2020(05):209-210.