炼铁冶金环保与节能技术研究

刘子渲 中冶东方工程技术有限公司 山东 青岛 266555

摘 要:在当前全球资源紧张和环境压力加大的背景下,炼铁冶金行业亟需转型升级,实现绿色可持续发展。本研究深入探讨了炼铁冶金过程中的环保挑战和节能潜力,提出了一系列创新性的环保与节能技术,旨在降低炼铁冶金行业的环境污染和能源消耗,促进产业的绿色转型和可持续发展。

关键词:炼铁冶金环保;节能;技术

引言:随着全球环境问题的日益凸显和能源资源的 紧张,炼铁冶金行业面临着严峻的环保与节能挑战。作 为能源消耗和污染排放的主要行业之一,炼铁冶金技术 的环保与节能研究显得尤为重要。通过深入探讨炼铁冶 金过程中的环保与节能技术,技术创新和优化,降低能 耗、减少排放,实现行业的绿色可持续发展。这不仅对 炼铁冶金行业自身的转型升级具有重要意义,也对全球 环境保护和可持续发展具有积极贡献。

1 炼铁冶金行业的重要性

炼铁冶金行业的重要性不言而喻, 其核心价值在于 生产金属铁这一基础材料,对于国家经济发展、社会进 步以及国家安全等方面都具有深远影响。第一, 炼铁 冶金行业是国家工业体系中的支柱产业之一。金属铁作 为现代工业的基础原材料, 广泛应用于建筑、交通、机 械、电子等多个领域,是支撑这些行业发展的关键因 素。其产量和质量直接关系到国家基础设施建设的速度 和水平,以及工业产品的竞争力和市场地位。第二,炼 铁冶金行业是推动工业技术创新的重要力量。随着科技 的持续进步, 炼铁行业实现了多项创新突破。高效节能 的炼铁炉技术显著降低了能耗与排放;智能化控制系统 优化了生产流程,提升了资源利用率;同时,新型环保 材料的应用减少了生产过程中的污染。这些创新不仅提 升了炼铁效率,还推动了行业的绿色可持续发展。第 三, 炼铁冶金行业是国民经济的重要组成部分, 对经济 增长起到了积极的推动作用[1]。该行业的发展不仅直接创 造了大量的就业机会,还带动了相关产业链的发展,如 采矿、运输、销售等,从而促进了地方经济的发展。第 四, 炼铁冶金行业的发展还促进了不同地区的文化交流 和融合。随着全球化进程的加速,各国之间的经济联系 日益紧密, 炼铁冶金产品的国际贸易也日益频繁。这不 仅加强了各国之间的经济联系, 也促进了文化交流和融 合,增进了各国人民之间的友谊和互信。

2 炼铁冶金环保与节能技术中存在的问题

2.1 技术水平相对滞后

尽管近年来炼铁冶金行业在环保技术方面取得了一定进展,但相较于国际先进水平,我国在废气、废水和固废处理技术上仍存在一定差距。例如,废气中的二氧化硫、氮氧化物和颗粒物等污染物的处理技术仍需进一步提升,以达到更严格的排放标准。虽然市场上存在多种先进的节能技术和设备,但由于成本、技术门槛或认知限制等因素,这些技术和设备在炼铁冶金企业中的普及率并不高。许多企业仍在使用传统的高能耗生产方式,导致能源利用效率低下,资源浪费严重。另外,目前该行业在技术创新方面仍存在投入不足、人才短缺等问题,导致新技术、新工艺的研发和应用进展缓慢。环保与节能技术往往涉及多个领域和环节的协同作用。然而,目前炼铁冶金行业在技术集成与应用方面仍存在不足,难以形成高效、协同的环保与节能技术体系。

2.2 设备老化与能效低下

炼铁冶金企业中的部分生产设备使用年限较长,技术性能逐渐落后,无法满足当前环保与节能的要求。这些老旧设备往往存在能耗高、排放大等问题,严重制约了企业的绿色可持续发展。由于设备老化,其运行效率和能源利用率普遍较低。在生产过程中,大量能源被浪费在无效环节,导致企业的生产成本增加,同时也加剧了环境污染问题。老旧设备的维护成本通常较高,需要投入大量的人力、物力和财力进行日常维护和保养^[2]。这不仅增加了企业的运营负担,还可能因设备故障导致生产中断,影响企业的正常运营。老旧设备往往难以适应新技术的升级和改造,限制了企业在环保与节能技术方面的创新和发展。此外,由于设备更新需要大量的资金投入,一些中小企业可能面临资金短缺的问题,难以完成设备的更新换代。

2.3 环保意识与管理水平不足

在炼铁冶金行业中,环保与节能技术面临的另一大 问题是环保意识与管理水平的不足。(1)环保意识淡 薄: 部分炼铁冶金企业及其员工对环保的重要性认识不 足,缺乏主动采取环保措施、减少污染排放的意愿。他 们可能更关注短期经济效益, 而忽视了环保对企业长远 发展的影响。(2)管理体系不健全:一些企业在环保管 理方面缺乏有效的制度和流程,导致环保工作难以得到 有效执行和监督。管理职责不明确、执行力度不够等问 题时有发生,使得环保措施无法真正落地。(3)培训与 教育不足:环保意识的提升离不开持续的教育和培训。 然而, 部分企业在员工培训方面投入不足, 未能将环保 理念纳入日常培训体系,导致员工对环保知识的掌握和 应用能力有限。(4)缺乏有效激励机制:企业缺乏有效 的环保激励机制,难以激发员工参与环保工作的积极性 和创造性。员工可能认为环保工作与个人利益无关,缺 乏主动参与的动力。

3 炼铁冶金环保与节能技术的实施策略

3.1 余热回收技术

在炼铁冶金行业中, 余热回收技术作为环保与节能 的重要手段,其应用对于提升企业能效、减少能源浪费 及降低碳排放具有重要意义。该技术主要聚焦于高效回 收利用生产过程中产生的各类余热资源, 以实现能源的 最大化利用。高炉冶炼过程中, 焦炭燃烧和铁水熔化会 产生大量高温烟气,这些烟气中蕴含丰富的余热资源。 通过安装烟气余热锅炉或热交换器,可将烟气中的余热 转化为蒸汽或热水,用于发电、供暖或预热其他工艺介 质,显著提升能源利用效率。高炉炉顶烟气回收利用和 热风炉余热利用是钢铁工业节能减排的重要措施。高炉 炉顶烟气富含大量余热,通过余压透平发电(TRT)装置 或煤气透平与电机同轴驱动技术(BPRT),能有效回收 这部分能量并转化为电能,显著降低高炉冶炼的能耗。 同时, 热风炉在加热过程中也会产生丰富的余热, 利用 换热器技术回收热风炉烟气中的显热, 预热助燃空气和 高炉煤气,能显著提升热风温度,降低高炉燃料消耗, 实现节能降耗和高效生产。这两项技术的结合应用,为 钢铁工业的可持续发展提供了有力支持[3]。以高炉系统为 例,通过回收高温烟气余热,不仅能够减少对外部能源 的依赖,还能降低燃料消耗和碳排放。据统计,高炉烟 气余热回收技术的实施,可使高炉工序的能耗降低约5% 至10%,具体节能效益取决于余热回收系统的效率及企业 实际生产情况。此外,余热回收技术还能为企业带来额 外的经济效益,如通过余热发电增加电力自给率,减少 外购电力成本等。

3.2 废气处理技术

在炼铁冶金行业中, 废气处理技术是环保与节能策 略的重要组成部分,其目标是减少有害物质的排放, 保护生态环境。炼铁废气中常含有大量的二氧化硫 (SO₂),可采用湿法石灰石石膏法、碱性氧化法、活性 炭吸附法等多种脱硫技术进行处理。这些方法通过化学 反应或吸附作用,将废气中的SO₂转化为无害或低毒物 质。有效降低了废气中SO2的浓度,减少了酸雨等环境污 染问题,对改善大气质量具有重要意义。针对废气中的 氮氧化物(NOx),常采用选择性催化还原法(SCR) 和选择性非催化还原法(SNCR)进行脱硝处理。这些方 法利用催化剂或还原剂,在特定条件下将NOx转化为氮 气和水蒸气。显著降低了NOx的排放,减轻了光化学烟 雾等环境问题,对保护人类健康和环境安全具有重要作 用。炼铁废气中含有大量颗粒物,通过静电除尘器、袋 式除尘器、湿式电除尘器等除尘设备进行处理。这些设 备利用电场力、过滤或湿式洗涤等原理,将废气中的颗 粒物捕集下来。这样大幅降低了废气中颗粒物的浓度, 减少了PM2.5等大气污染物的排放,对改善空气质量具有 显著效果。废气中蕴含大量的热能,可通过余热锅炉、 热风炉、热交换器等热回收技术进行回收利用。在减少 废气排放的同时,实现了能源的回收利用,提高了能源 利用效率,降低了生产成本。

3.3 节能型炼铁工艺

节能型炼铁工艺是现代炼铁工业发展的重要方向, 它不仅有助于降低能源消耗,减少生产成本,还促进了 整个行业的绿色转型。富氢高炉作为新兴技术正引领 节能潮流。此外,节能型炼铁还包含提高入炉物料温度 以增强燃烧效率,以及利用粉煤灰等废弃物替代部分燃 料,这些措施共同推动炼铁工业向更加绿色、高效的方 向发展。高炉富氧喷煤技术通过向高炉内喷入富含氧气 的煤粉,与热风中的氧气发生更充分的燃烧反应,从而 提高了高炉的燃烧效率和煤粉的利用率。这一技术不仅 减少了焦炭的消耗量,降低了生产成本,还显著降低了 高炉排放的污染物,如二氧化碳和氮氧化物。同时,富 氧喷煤还改善了高炉内的温度分布和气流运动, 有助于 提升高炉的稳定性和生产效率。低硅冶炼技术则是通过 调整炼铁原料中的硅含量,减少高炉渣中的硅氧化物生 成,从而降低高炉渣的量和处理难度。这一技术不仅减 少了高炉渣对环境的污染,还提高了铁水的纯净度和质 量,为后续的炼钢工艺提供了更好的原料基础[4]。然而, 节能型炼铁工艺的实施也面临一定的挑战。技术难度大 是其中之一,这些工艺要求精确控制各项工艺参数,如

温度、压力、气体成分等,对操作人员的技能水平和专业素养提出了更高要求。同时,部分节能工艺还需要特殊设备的支持,如高效喷煤枪、低硅原料预处理设备等,这些设备的购置和安装成本较高,增加了企业的投资压力。因此,在推广和应用节能型炼铁工艺时,企业需要综合考虑技术可行性、经济性和环保效益等多方面因素,制定科学合理的实施方案。

3.4 废渣综合利用技术

废渣综合利用技术通过精细化的破碎、筛分及磁选 等物理处理手段, 高炉渣等原本被视为废弃物的材料被 赋予了新生。在减少废渣排放方面,这一技术成效显 著。随着工业化进程的加速,废渣的产生量日益庞大, 若不经处理直接排放,不仅会占用大量宝贵的土地资 源,还可能对周边环境造成污染。而废渣综合利用技术 的实施,有效减轻了这一负担,减少了对自然环境的负 面影响。更为重要的是,废渣在经过一系列处理后,能 够转化为建筑材料、路基材料等具有实际应用价值的资 源。这不仅解决了废渣的出路问题,还为企业开辟了新 的利润增长点。例如, 高炉渣经过适当处理后可以制成 矿渣水泥、微晶玻璃等高性能建材, 其性能甚至优于传 统材料, 市场需求旺盛。同时, 废渣作为路基材料, 具 有强度高、稳定性好等优点, 广泛应用于道路建设中, 为基础设施建设提供了有力支撑。除此之外,废渣综合 利用技术的推广和应用,还有利于推动循环经济的发 展。循环经济倡导资源的最大化利用和废弃物的最小化 排放,废渣综合利用正是这一理念的生动实践。通过废 渣的资源化利用,企业实现了从"资源-产品-废弃物"的 传统线性经济模式向"资源-产品-再生资源"的循环经济 模式的转变, 为行业的可持续发展奠定了坚实基础。

3.5 智能化控制技术

智能化控制技术利用大数据分析平台,能够实时收集并处理海量的生产数据,包括原料消耗、能源消耗、产品质量参数等。通过先进的人工智能算法,这些数据被转化为有价值的洞察,帮助企业识别生产过程中的

瓶颈与潜力,进而制定出更加科学合理的生产计划与调 度方案。这种基于数据的智能化决策,不仅提高了生产 决策的准确性和及时性,还极大地增强了企业的市场响 应能力和竞争力。在生产稳定性方面,智能化控制技术 通过精准控制各项工艺参数,有效减少了生产过程中的 波动与不确定性,确保了产品质量的稳定与可靠。除此 之外,智能化控制技术的引入还显著降低了人工成本。 传统炼铁过程需要大量的人工干预与监控, 而智能化控 制系统则能够自动完成这些任务,减轻了工人的劳动强 度,提高了工作效率。然而,智能化控制技术的实施也 面临一定的挑战。首先,该技术对技术支持和专业人才 的要求较高,企业需要投入大量资源进行技术引进与人才 培养。其次,智能化控制系统的建设与维护成本也相对较 高,这可能会给企业带来一定的经济压力。因此,在推 进智能化控制技术的过程中,企业需要综合考虑自身实 际情况与市场需求,制定科学合理的实施方案与策略。

结束语

总之,经过对炼铁冶金环保与节能技术的深入研究,我们得出了诸多有益的结论。这些技术不仅能够显著降低能源消耗和污染物排放,提升生产效率,还能推动炼铁冶金行业的绿色转型。面对全球资源紧张和环境保护的压力,必须持续加强技术创新和应用,推动炼铁冶金行业向更加环保、节能的方向发展。展望未来,我们有信心通过不懈的努力,实现炼铁冶金行业的可持续发展,为构建绿色、低碳的全球经济体系贡献力量。

参考文献

- [1]马玉华.冶金工程中环保工作的重要性及其策略分析[J].冶金与材料,2021,41(06):155-156.
- [2]刘伟.钢铁冶金过程环保和节能技术探讨[J].中国金属通报,2020,(07):84-85.
- [3]庞师艳.炼铁冶金环保与节能技术探析[J].中国金属通报,2019,(02):21+23.
- [4]刘刚.炼铁冶金环保与节能技术研究[J].中小企业管理与科技(上旬刊),2019(9):129-130.