水利工程中堤防护岸工程施工技术的应用

李建国 邢台市信都区水务局 河北 邢台 054000

摘 要:水利工程堤防护岸施工,采用多元化技术确保安全稳固。坡式、坝式、墙式及生物护岸技术各展所长,结合抛石护岸增强抗冲刷能力。通过精心选料、科学填筑与严密压实,提升堤防结构强度与耐久性。技术应用中注重环保与生态平衡,确保水利工程既安全高效又和谐共生。

关键词:水利工程;堤防护岸;施工技术

水利工程中,堤防护岸工程作为抵御洪水侵袭、保障人民生命财产安全的关键屏障,其施工技术的应用至关重要。随着科技发展与工程实践的深入,堤防护岸工程已形成多样化的施工技术体系,旨在提升堤防的稳固性、耐久性及生态友好性。本文旨在探讨这些施工技术在水利工程堤防护岸中的具体应用,分析其优势与挑战,为相关工程建设提供参考与借鉴。

1 堤防护岸在水利工程中所发挥的作用

堤防护岸作为水利工程的重要组成部分,发挥着至 关重要的作用,主要体现在几个方面;(1)防洪减灾: 堤防护岸是抵御洪水侵袭的第一道防线。它们通过提高 河岸的防洪能力,有效减少洪水对沿岸地区的淹没范围 和深度,保护人民生命财产安全,减轻洪涝灾害带来的 经济损失和社会影响。(2)保护土地资源:河流在自然 状态下往往存在侵蚀和淤积现象,长期作用下可能导致 河岸坍塌、土地流失。堤防护岸的建设能够稳定河岸, 防止水流直接冲刷河岸土壤,从而保护宝贵的土地资源 不被侵蚀,维护生态平衡。(3)促进水资源利用:堤防 护岸的合理布局和建设,有助于调节河流水位,保障河 道畅通,为农业灌溉、城市供水、水力发电等提供稳定 可靠的水资源条件,它们还能减少因洪水泛滥导致的水 质污染,保护水资源质量。(4)维护生态环境:在堤 防护岸的设计和建设过程中,融入生态理念,如采用生 态护坡、建设亲水平台等措施,不仅能增强堤防的稳固 性,还能促进生物多样性保护,为水生生物和陆生生物 提供栖息地和迁徙通道,维护河流生态系统的健康与稳 定[1]。(5)提升城市景观:随着城市化进程的加快,堤 防护岸不仅是水利工程设施,还逐渐成为城市景观的重 要组成部分。通过科学规划和精心设计, 堤防护岸可以 融入城市风貌, 提升城市形象, 为市民提供休闲娱乐的 好去处,增强城市的宜居性和吸引力。堤防护岸在水利 工程中发挥着防洪减灾、保护土地资源、促进水资源利 用、维护生态环境以及提升城市景观等多重作用,是保障经济社会可持续发展和人民群众安居乐业的重要基础设施。

2 水利工程中堤防护岸工程施工技术相关的问题

2.1 安全风险高

在水利工程中,堤防护岸工程的施工往往伴随着较高的安全风险。这主要是由于施工环境复杂多变,涉及水域作业、高空作业、重型机械操作等多个高风险环节,水域作业要求施工人员具备良好的水上作业技能和紧急救援能力,否则一旦发生意外,救援难度极大。高空作业如堤顶或护岸斜坡上的施工,增加了人员坠落的风险,需要严格的安全防护措施。重型机械如挖掘机、推土机等的操作,若操作不当或维护不善,极易引发机械伤害或事故,天气变化也是不可忽视的安全风险因素,如暴雨、洪水、台风等自然灾害都可能对施工安全造成严重影响。

2.2 管理制度不健全

堤防护岸工程施工管理制度的不健全是另一个亟待解决的问题。管理制度的缺失或不完善,容易导致施工过程中的混乱和无序,进而影响工程质量和施工进度。具体而言,管理制度不健全可能表现在以下几个方面:一是责任划分不明确,导致施工过程中出现问题时相互推诿,无法及时有效地解决问题;二是监督机制不完善,缺乏有效的监管手段和措施,难以确保施工按照既定方案和标准进行;三是沟通机制不畅,施工过程中涉及的各方信息交流不畅,影响决策效率和执行效果;四是奖惩机制不合理,无法有效激励施工人员积极参与工作并遵守规章制度。

3 水利工程中堤防护岸工程施工技术应用

在水利工程领域,堤防护岸工程作为关键性的基础设施,其施工技术直接关乎到工程的安全、质量和效益。

3.1 坡式护岸施工技术

坡式护岸,也被称为平顺护岸,是水利工程中常见 的一种护岸形式。首先,坡式护岸施工的核心在于对护 岸坡脚及岸坡的合理覆盖与加固, 在施工过程中, 需根 据岸坡的实际情况,选择适宜的抗冲材料进行覆盖,如 块石、混凝土块等,以有效抵御水流的冲刷和侵蚀,这 些材料需具备坚硬、耐风化的特性, 以确保其长期稳定 性[2]。其次,护脚工程是坡式护岸施工中的关键环节。 护脚材料的选择与施工直接关系到护岸的整体稳定性。 常见的护脚方式有抛石护脚和沉枕护脚等。抛石护脚适 用于枯水期,通过将坚硬的石块抛入河底,形成稳定的 护脚层,以抵抗水流冲刷。而沉枕护脚则通过捆绑石块 形成沉枕, 进一步加固护脚结构。坡式护岸施工还需注 意施工质量的控制,在施工过程中,应严格按照施工图 纸和技术要求进行施工,确保覆盖材料的厚度、坡度等 参数符合设计要求。同时还需加强施工现场的监测与管 理,及时发现并处理潜在的质量问题。

3.2 坝式护岸施工技术

坝式护岸主要通过修建丁坝、顺坝等结构物,将水流挑离堤岸,从而减轻水流对堤岸的冲刷。丁坝、顺坝等结构物的设计需充分考虑河流的实际情况,包括水流速度、河床宽度、水流方向等因素。通过科学合理的设计,使坝体结构能够充分发挥其导流、挑流的作用,有效保护堤岸安全。在施工过程中,需严格按照施工图纸和技术要求进行施工,特别是在坝体结构的砌筑、浇筑等环节,应严格控制施工质量,确保坝体结构的强度和稳定性。还需加强施工现场的安全管理,确保施工人员的安全。坝式护岸施工还需注意水流调整与河床保护。在施工过程中,应密切关注水流变化,及时采取措墙施式调整护水流岸方向是指在,堤避免岸水流顺直接面冲刷修筑堤竖直岸或。接近同时竖,直的还需陡坡采取措施式保护挡河床墙,,防止以因抵抗施工水造成的流的河床冲刷破坏和和水土流失。侵蚀

3.3 墙式护岸施工技术

首先,墙式护岸的设计需充分考虑地形、水流等条件。通过科学合理的设计,确定挡墙的高度、厚度、材料等参数,以确保挡墙的稳定性和耐久性。还需考虑挡墙与堤岸的衔接方式,确保挡墙与堤岸形成一个整体结构。其次,在施工过程中,需严格按照施工图纸和技术要求进行施工。特别是在挡墙的砌筑、浇筑等环节,应严格控制施工质量,确保挡墙的强度和稳定性,还需加强施工现场的监测与管理,及时发现并处理潜在的质量问题。墙式护岸施工还需注意防渗透和防腐蚀问题。由于挡墙直接与水接触,容易受到水流的冲刷和侵蚀,

在选材和施工过程中,需采取有效的防渗透和防腐蚀措施,以延长挡墙的使用寿命^[3]。

3.4 生物护岸施工技术

生物护岸施工技术,作为水利工程领域的一股绿色 革新力量, 巧妙融合了工程技术的精密与生态学原理的 智慧。这一技术深刻认识到自然生态系统在防洪固土中 的独特作用,通过模拟并强化自然界的自我修复机制, 实现了堤岸防护与生态环境保护的和谐共生。在施工初 期,详尽的现场勘察与生态评估如同绘制蓝图的基石, 为选择合适的植物种类与布局策略提供了科学依据。柳 树、芦苇等植物,以其强健的根系和卓越的固土能力, 成为了生物护岸建设中的明星材料。它们不仅能够有效 抵御水流的侵蚀, 更以其茂密的枝叶和错综的根系网 络,编织出一张坚不可摧的生态防护网。更为重要的 是,生物护岸还充当了生态恢复与生物多样性的孵化 器。随着植物群落的日益繁茂,它们为鱼类、鸟类等水 生生物提供了宝贵的栖息地和丰富的食物资源,促进了 生态链的完整与稳定。在施工与后期管理中,对植物生 长环境的精心呵护与科学管理, 更是确保了这一绿色防 护体系能够持续、健康地发挥作用, 为水利工程的可持 续发展贡献力量。

3.5 抛石护岸技术

抛石护岸技术,作为水利工程中一种历史悠久且成 效显著的堤防加固手段, 其独特魅力在于其简单直接却 高效稳定的特性。该技术核心在于精选优质石料,这 些石料需具备优异的抗风化、耐磨蚀能力, 以应对长期 水流冲刷与自然环境侵蚀的挑战, 确保堤岸的稳固与安 全。施工过程中, 抛投策略的科学规划尤为关键。技术 人员需精准把握水流动态、河床地形等自然条件, 灵活 调整抛投位置与量度,力求石层紧密贴合河床,形成坚 不可摧的防护屏障。为进一步提升护岸结构的稳固性, 常辅以水下混凝土浇筑或钢筋笼加固等措施,构建起多 层次的防护体系。抛石护岸技术的广泛应用,得益于其 施工简便、成本低廉、适应性强等诸多优势。在生态环 境日益受到重视的今天,该技术也面临着新的挑战。为 减轻其对水生生态的潜在影响,施工过程中需严格遵循 环保原则,采取必要的生态修复措施,如种植水生植 物、设置生态缓冲区等,以恢复和保护周边生态环境[4]。 抛石护岸技术不仅是水利工程中一道坚固的防线, 更是 人与自然和谐共生的生动实践。在未来,随着技术的不 断进步与环保理念的深入人心, 抛石护岸技术必将迎来 更加广阔的发展前景。

4 水利工程堤防工程施工技术的工艺流程

在水利工程建设中,堤防工程作为防洪减灾的重要 屏障,其施工技术的工艺流程至关重要。从土料选择到 堤身填筑,再到堤坝压实,每一步都需严格遵循规范, 确保工程质量与安全。

4.1 土料选择

土料选择是堤防工程施工的首要环节,直接关系到 堤身的稳定性和耐久性。在选择土料时,需综合考虑土 料的物理力学性质、化学成分、含水量、颗粒级配以 及来源的可靠性等因素。首先,进行土料勘探与试验, 通过现场勘探,了解土层的分布、厚度、性质等基本情 况, 并采集代表性土样进行室内试验。试验内容包括土 的颗粒分析、密度、含水率、抗剪强度、渗透性等指标 的测定,以评估土料的适用性。其次,根据试验结果和 工程要求,确定合适的土料种类,一般来说,堤防工程 应优先选用透水性小、压缩性低、抗剪强度高的土料, 如黏土、壤土等。同时,应避免使用含有大量有机质、 腐殖质或有害物质的土料,以免对堤身造成损害。最 后,制定土料开采与运输方案,根据土料分布情况和工 程进度要求, 合理规划开采区域和运输路线, 确保土料 供应的及时性和连续性,加强土料开采过程中的质量控 制,防止混入杂质或破坏土料结构。

4.2 堤身填筑

堤身填筑是堤防工程施工的核心环节, 其质量直接 影响到堤防的整体稳定性和防洪能力。在填筑过程中, 需严格控制填筑材料的质量、填筑厚度、填筑方式以及 填筑过程中的排水与压实等关键环节。在填筑前,需对 堤基进行清理和整平,清除杂草、树根、石块等杂物, 并处理好软弱土层和不良地质现象。对于需要加固的堤 基,还需采取相应的加固措施,如换填、注浆等。堤身 填筑应采用分层填筑、分层压实的方法,每层填筑厚度 应根据土料性质、压实机械性能以及设计要求等因素确 定。在填筑过程中,需保持填筑面的平整度和坡度,避 免出现凹凸不平或陡坡现象。在填筑过程中,需设置良 好的排水系统,及时排除填筑体内的积水和雨水,防止 因水分过多而影响压实效果,采用合适的压实机械和压 实方法,对每层填筑体进行充分压实,确保填筑体的密 实度和强度满足设计要求[5]。在填筑过程中和填筑完成 后,需对填筑体的质量进行全面检测和验收。检测内容 包括填筑体的密度、含水率、抗剪强度等指标以及填筑 体的外观质量等。对于不符合要求的部位,需及时进行 处理和补救。

4.3 堤坝压实

堤坝压实是堤防工程施工中不可或缺的一环, 其目 的在于提高堤身的密实度和强度,增强堤防的稳定性和 耐久性。在压实过程中, 需严格控制压实机械的选择、 压实方法的应用以及压实质量的检测等关键环节。选择 合适的压实机械, 压实机械的选择应根据土料性质、填 筑厚度以及设计要求等因素确定。一般来说,对于黏性 土料可采用振动碾进行压实; 对于砂性土料可采用轮胎 碾或羊足碾进行压实,需确保压实机械的性能良好、操 作简便且安全可靠。采用合适的压实方法, 压实方法的 选择应根据土料性质、填筑厚度以及压实机械的性能等 因素确定。常用的压实方法有静压法、振动压实法以及 冲击压实法等。在压实过程中, 需保持压实机械的匀速 行驶和均匀压实,避免出现漏压或超压现象。加强压实 质量的检测与控制, 在压实过程中和压实完成后, 需对 压实质量进行全面检测和控制。检测内容包括压实度、 含水率等指标以及压实面的平整度等。对于不符合要求 的部位,需及时进行处理和补救。同时还需加强压实过 程中的质量监控和记录工作,确保压实质量的可追溯性 和可控性。

结束语

堤防护岸工程技术的应用,是水利工程安全防线的 重要构建。随着技术的不断进步与创新,将持续探索更 环保、更高效的施工策略,为水利工程保驾护航。未 来,堤防护岸工程将更加智能化、生态化,为社会的可 持续发展贡献力量。

参考文献

[1]杨洋.关于公路工程变更及其造价控制思路分析[J]. 价值工程,2020,39(4):34-35.

[2]赵小芳.关于水利工程中堤防护岸工程施工技术分析[J].价值工程, 2019, 38(35): 243-244.

[3]梁进宏.探析水利工程中河道堤防护岸工程施工技术[J].农业科技与信息,2019(15):108-109.

[4]沈波.水利工程中堤防护岸工程施工技术的研究[J]. 农业开发与装备,2021(11):123-124.

[5]饶天龙.关于水利工程中堤防护岸工程施工技术分析[J].内蒙古水利,2021(09):56-57.