煤矿掘进工作面快速掘进工艺分析

李文明 河南焦煤能源有限公司中马村矿 河南 焦作 454171

摘 要:煤炭在全球能源需求持续增长的形势下,具有十分重要的发展地位,随着煤矿开采规模不断扩大,提高开采效率也成为煤炭企业关键问题,而煤矿掘进工作面的掘进速度直接关乎整体煤矿开采效率。因此本文围绕煤矿掘进工作面快速掘进工艺展开研究,分析其原理、影响因素、现状与问题,并提出优化策略。旨在提高煤矿掘进效率,保障安全,为煤矿开采行业发展提供理论与实践支持,满足能源战略需求。

关键词:煤矿;掘进工作面;快速掘进工艺;掘进设备

引言

在煤炭行业竞争日益激烈的当下,传统掘进工艺在 速度上已难以满足大规模开采需求,复杂地质条件下还 面临安全性和经济性挑战,制约了煤矿行业发展。而 高效的掘进意味着在相同时间内可以有更多的工作面投 人生产,直接提升整个煤矿的原煤产量,能够创造更大的经济效益,更有助于保障能源供应的稳定性。快速掘进工艺能够显著提高巷道的掘进速度,减少巷道掘进时间,降低作业人员在危险环境中的暴露时长,促进煤矿安全生产形势的好转。

1 煤矿快速掘进工艺原理及影响因素

煤矿掘进工作面,又称掘进迎头,是为回采工作面 做准备时首先开采的巷道,具有探煤、掘煤、探水、探 气等多种功能,通常是一个狭窄的空间,需要专业设 备和技术进行开采,且没有自主通风系统,需特别注意 通风和安全问题。掘进工作面一般被老教材或矿工称为 "掌子面", 意为和回采工作面比起来, 好像是人的一 个手掌那么大的地方。[1]快速掘进工艺则是在煤矿掘进 工作中,采用高效、先进的掘进技术和设备,如钻爆法 (包括气腿式凿岩机、液压钻车等作业线)和机械掘进 (如掘进机),以及锚杆支护、U钢支护等支护技术,以 提高掘进速度和效率,同时确保工作面的安全和稳定。 该工艺受巷道围岩强度、巷道断面尺寸及形状、掘进设 备和技术水平、支护效果等多种因素影响, 可通过掌握 截割作业要点、改进巷道掘进施工工艺、完善运输系 统、联合应用支护技术等优化措施,实现掘进速度的提 升和煤矿开采作业的安全与高效。

1.1 快速掘进工艺原理

煤矿掘进工作面的作业是一个复杂且系统的工程, 涉及多个关键工艺环节,这些环节相互配合、协同作 用,共同构成了快速掘进工艺的技术核心体系。煤矿掘 进工作面作业过程中,涉及多种关键工艺原理。(1) 破岩方面,钻爆法借助钻孔装填炸药,依炸药爆炸能量 破碎岩石, 其钻爆参数如炮眼深度、间距与装药量等依 岩石性质和巷道断面而定, 合理设计可使岩石破碎均 匀,减少超欠挖;机械破岩法中掘进机依靠截割头旋转 推进,凭借截割头上刀具在压力扭矩下切入岩石,刀具 形状、布置与截割速度影响破岩效率,且不同掘进机适 配不同硬度岩石。(2)装岩环节,耙斗装岩机利用耙 斗在绞车牵引下往返运动耙取岩石入卸料槽并经转载设 备运出,装岩效率受耙斗容积、耙取距离和运动速度等 左右; 铲斗装岩机以铲斗插入岩堆、装满后提升卸载作 业,其效率与铲斗容量、提升速度和卸载方式相关;连 续装载机采用刮板或链板输送机构达成连续装岩,装岩 效率受岩石块度与湿度影响。(3)运输上,刮板输送机 借助刮板链条在槽内循环运动运输煤炭或矸石,运输能 力关联刮板链速度、刮板间距与槽体尺寸,适用于短距 大运量运输;带式输送机依靠输送带连续运转实现物料 运输,运输能力大且效率高,受输送带宽度、带速与张 力等因素制约,可长距离运输并广泛应用于煤矿巷道。 (4) 支护层面, 锚杆支护通过锚杆将巷道围岩锚固成整 体承载结构, 支护参数如锚固力、长度与间距依围岩性 质和应力状态设计,可提升围岩强度与稳定性;锚索支 护凭借较大锚固力深入稳定岩层加固顶板, 其预应力、 长度与布置方式影响支护效果,常用于深部或顶板压力 大的巷道; 喷浆支护将混凝土喷射至巷道表面形成支护 层,能封闭围岩防止风化水蚀,与锚杆、锚索配合增强 支护效果, 喷浆厚度、喷射角度和混凝土强度是关键参 数。[2]破岩是掘进的第一步,为后续的装岩、运输和支护 创造条件;装岩和运输环节需要紧密配合,确保破碎后 的岩石能够及时、高效地运出掘进工作面,避免因岩石 堆积而影响掘进进度; 支护则是保障巷道稳定性的关键 环节,必须根据围岩的情况及时、合理地进行,以防止 围岩变形和垮落对掘进作业造成影响。只有各工艺环节 协同运作良好,才能保障掘进作业高效、安全、稳定地 推进,实现煤矿快速掘进的目标。

1.2 影响快速掘进的因素

煤矿掘进工作面的快速掘进受地质条件、设备、施 工组织与管理多种因素综合影响。(1)在地质条件方 面,岩石硬度直接关联破岩难度与速度,极硬岩石需特 殊破岩手段, 而节理裂隙发育虽利于破碎却可能危及巷 道稳定性; 煤层厚度与倾角影响设备选型、作业方式及 支护复杂程度,薄煤层限设备尺寸,厚煤层涉及分层开 采,大倾角煤层增加掘进与支护难度;瓦斯含量高时需 强化通风与防治措施, 瓦斯超限会阻碍掘进进程; 地质 构造如断层、褶皱破坏岩石完整性,带来破碎、涌水等 难题, 需特殊处理。(2)设备因素方面, 掘进机性能 参数至关重要,切割功率决定破岩能力,截割速度与行 走速度分别影响破岩与定位效率, 其稳定性和可靠性亦 不可忽视;装岩与运输设备的配套性要求装岩速度与运 输能力适配,设备间连接及协同作业可靠性影响整体效 率,如转载环节的顺畅程度;支护设备自动化程度高可 显著缩短支护时间提升掘进效率, 自动锚杆机相对人工 操作设备在安装锚杆时效率优势明显且降低劳动强度。 (3)施工组织与管理层面,施工工艺流程的合理性体 现在各工序顺序与衔接方式对掘进速度的作用, 优化流 程可使破岩、装岩、运输和支护紧密协作减少等待; 劳 动组织形式需依据设备操作与工序施工需求合理配备人 员,科学安排工作班次实现连续施工并提高设备利用 率,人员专业素质与协作能力也颇为关键;安全管理措 施是掘进作业连续性的保障, 瓦斯检测、顶板管理等若 有缺失也易引发安全事故致使掘进中断。

2 煤矿掘进工作面快速掘进工艺的现状

在当今的矿业领域,煤矿掘进工作面的快速掘进工 艺是提高煤矿生产效率和经济效益的关键技术之一。随 着技术的不断进步,多种快速掘进工艺应运而生,极大 地推动了煤矿开采的现代化进程。

2.1 常见快速掘进工艺

(1)综合机械化掘进工艺。该工艺以悬臂式掘进机 为核心,配合转载机和刮板输送机或带式输送机。掘进 机切割破岩后,将岩石装入转载机,再经输送机运出。 在掘进过程中,根据巷道围岩情况适时进行支护。多适 用于多种地质条件下的巷道掘进,尤其在中硬煤层、大 断面巷道中应用广泛。其优点是掘进速度相对较快,机 械化程度高,能够实现连续作业。但在遇到硬岩时,掘 进机的切割效率会降低,设备磨损加剧。(2)连续采煤 机掘进工艺。连续采煤机通过多个截割滚筒同时工作, 实现连续破岩。它具有截割速度快、生产能力大的特 点。配套设备包括梭车、破碎机和锚杆机等。梭车用于 将连续采煤机采下的煤运至破碎机,破碎机对大块煤进 行破碎后, 再通过输送机运出。锚杆机则在采煤机作业 后及时进行支护。在房柱式开采中,连续采煤机可以快 速掘进煤房和煤柱,提高开采效率。在短壁开采中也有 良好的表现。与综合机械化掘进工艺相比,连续采煤机 掘进工艺在特定的开采方式下具有更高的掘进速度,但 设备投资较大,对地质条件的适应性相对较窄。(3) 掘锚一体化工艺。掘锚一体化设备将掘进和锚杆支护功 能集成在一起,在掘进的同时可以进行锚杆安装。其截 割机构和支护机构在空间和时间上进行合理布局,实现 掘锚同步作业。例如,在掘进机截割头后方设置锚杆钻 机, 当掘进一定距离后, 立即进行锚杆支护。这种工艺 大大缩短了支护时间,减少了掘进循环中的停顿时间, 提高了整体掘进效率。在巷道围岩条件较好的情况下, 具有广阔的应用前景,是未来快速掘进工艺的一个重要

2.2 快速掘进工艺存在的问题

快速掘进工艺除了在施工管理方面产生障碍, 其在 煤矿开采中的应用问题主要表现在以下两方面: (1) 设备问题。主要表现为设备在复杂地质条件适应性差、 设备可靠性不足以及设备配套性不完整方面,煤矿井下 环境恶劣,设备在运行过程中面临着粉尘、潮湿、高温 等多种不利因素的影响,这使得设备的故障率较高,设 备的部件容易损坏,设备之间的衔接部位也容易出现故 障,并且设备维修周期长。[3]同时不同设备之间在生产能 力、连接方式等方面存在不协调问题。例如,装岩设备 的装岩速度与运输设备的运输能力不匹配,导致运输环 节出现瓶颈,影响作业的顺畅进行,进而影响整个掘进 系统的效率(2)技术问题。现有的破岩技术在面对高强 度岩石时效率较低。钻爆法在硬岩中需要消耗大量的炸 药,且容易对围岩造成破坏。机械破岩法在极硬岩石中 也面临刀具磨损快、破岩力不足等问题。此外,在深部 开采、软岩巷道等特殊条件下,现有的支护技术难以满 足要求。支护参数设计不够精准,导致支护效果不佳。 同时,随着掘进速度的提高,现有的通风系统在长距 离、大断面巷道中难以保证良好的通风效果,容易出现 瓦斯积聚等问题。除尘技术也不能有效降低掘进过程中 的粉尘浓度,影响作业人员的身体健康和作业环境。

3 快速掘进工艺的优化策略

3.1 设备改进

通过采用新型刀具材料、优化刀具排列等方式改进 截割头的设计,提高掘进机切割功率,进而提高破岩效 率;通过传感器监测掘进机的工作状态,实现自动调整 截割参数,提高掘进机设备的易用性和可靠性;设计高 效的装岩设备,提高装岩速度和装满系数。如,对于连 续装载机,可优化刮板或链板的结构,提高对不同块度 岩石的适应性,减少装岩过程中的卡堵现象;根据巷道 条件和掘进速度合理选择输送机类型和参数,优化运输 系统;开发自动锚杆机、锚索机等自动化、快速支护设 备,提高支护设备的定位精度,保证支护质量,提高支护 速度;研究能够根据不同地质条件和支护要求灵活调 整支护参数的多功能支护设备,如根据围岩压力自动调 整支护参数的多功能支护设备,如根据围岩压力自动调 整凿杆的预应力,或根据巷道断面形状和尺寸改变支护 方式,提高支护设备的适应性。

3.2 技术革新

探索激光破岩、高压水射流破岩等新型破岩方法在煤矿掘进中的应用可能性;采用高精度钻孔设备,研发新型炸药,通过数值模拟和现场试验,确定最佳的炮眼深度、间距、装药量等参数,优化钻爆法参数;深入研究深部巷道、软岩巷道等特殊条件下的支护理论。建立更加精确的力学模型,为支护参数设计提供理论依据,优化支护方案;推广应用高强度锚杆、新型锚索、高性能喷浆材料新型支护材料;根据掘进速度和巷道长度确定通风量和通风方式,如对于长距离大断面巷道,可采用混合式通风或多级通风方式。合理布置通风设备,提高通风效率,确保通风效果良好;采用先进的除尘技术,如高效喷雾降尘、布袋除尘等,在转载点、破碎机等粉尘产生量大的部位安装布袋除尘器,提高喷雾降尘效果,改善作业环境。

3.3 管理精进

采用先进的项目管理方法,优化施工工艺流程;合理安排资源,缩短各工序之间的衔接时间。同时,根据

不同的地质条件和巷道设计,制定个性化的施工组织 方案,确保施工的连续性和高效性。依据掘进速度目标 和设备运行特点,合理安排工作班次。[4]保证设备的高 利用率和人员的充分休息。还可以培养多技能工人以应 对多岗位需求,确保在人员不足或特殊情况下的作业连 续性。此外,针对新设备和新工艺,制定全面的培训计 划。对操作人员进行系统培训,并建立合理的人员激励 机制,提高员工的工作积极性和责任心,如定期组织技 能考核和竞赛,采用物质奖励和精神奖励相结合的方 式,激发员工学习和提高技能的积极性。最后,聚焦安 全管理,要加强对施工现场的安全检查和隐患排查力 度,制定详细的安全检查清单,定期对进行全面检查。 对于检查出的安全隐患,要建立台账,明确整改责任 人、整改措施和整改期限,确保隐患得到及时有效的整 改。并针对可能出现的安全事故制定完善的应急预案, 切实保障掘进作业的安全和持续进行。

结语

常见的快速掘进工艺如综合机械化掘进、连续采煤 机掘进和掘锚一体化工艺各有特点和适用范围。然而, 目前其在实际应用中的设备和技术问题也严重制约了煤 矿掘进工作面的快速掘进。本文提出通过设备改进、技 术革新以及施工管理优化的策略,能够有效克服现有问 题,提高煤矿掘进工作面快速掘进工艺水平,增强掘进 效率和安全性,保障煤矿开采作业的顺利进行。

参考文献

[1]王金亮.浅谈煤矿巷道快速掘进工艺优化应用[J].能源与节能,2023,(01):181-184.

[2]赵伟.煤矿掘进工作面快速掘进工艺技术研究[J].机械管理开发,2022,37(07):325-326+331.

[3]张竹勤.煤巷快速掘进工艺优化设计研究[J].矿业装备,2021,(06):60-61.

[4]李军军.工作面快速掘进工艺及设备优化研究[J].机械管理开发,2021,36(04):136-137.