基于多源遥感数据的水工环地质灾害监测与预警研究

段志刚 单 斌

宁夏回族自治区水文环境地质调查院(宁夏回族自治区水文环境地质研究所) 宁夏 银川 750011

摘 要:水工环地质灾害,包括滑坡、泥石流、地面塌陷等,对人类社会和自然环境构成严重威胁。随着遥感技术的快速发展,利用多源遥感数据进行地质灾害的监测与预警已成为研究热点。本文旨在探讨如何有效整合和利用多源遥感数据,提升水工环地质灾害的监测精度与预警效率,为防灾减灾提供科学依据。

关键词: 多源遥感数据; 水工环; 地质灾害; 监测; 预警

引言

水工环地质灾害的发生往往具有突发性和破坏性, 传统的地面调查方法难以全面覆盖和实时监测。遥感技术,以其大范围、高时效、非接触等优势,在地质灾 害监测中展现出巨大潜力。本文将从多源遥感数据的获 取、处理、分析及应用等方面,系统阐述其在水工环地 质灾害监测与预警中的最新进展。

1 水工环地质灾害监测的多源遥感数据概述

1.1 遥感数据源分类

1.1.1 光学遥感

光学遥感是地质灾害监测中常用的数据源之一。以Landsat、Sentinel-2等卫星为代表的光学遥感数据,通过捕捉地表反射的可见光和红外辐射,生成高分辨率的影像。这些影像能够清晰地展示地表覆盖的变化,如植被覆盖度、土壤侵蚀、水体变化等,对于识别滑坡、泥石流等地质灾害的潜在风险区域具有重要意义。同时,光学遥感数据还能提供灾害发生前后的对比信息,有助于评估灾害的影响范围和程度。

1.1.2 雷达遥感

雷达遥感,特别是合成孔径雷达(SAR),具有穿透云层、不受天气影响的特点,能够实现对地表形变的高精度测量。在地质灾害监测中,SAR数据能够捕捉到地表微小的形变信息,如地面沉降、山体滑移等,为预测和评估地质灾害提供了重要依据。此外,SAR还能进行全天候、全天时的监测,提高了灾害监测的时效性和准确性。

1.1.3 无人机遥感

无人机遥感以其灵活性和高分辨率的优势,在局部 区域的地质灾害精细调查中发挥着重要作用。通过搭载高 分辨率相机等传感器,无人机能够获取灾害现场的实时影 像数据,为灾害的快速响应和决策提供了有力支持^[1]。同 时,无人机遥感还能进行低空飞行,获取更为详细的地表 信息,有助于揭示灾害的细微特征和潜在风险。

1.1.4 重力卫星与InSAR

重力卫星和干涉合成孔径雷达(InSAR)是监测地表微小形变、揭示潜在地质活动的重要手段。重力卫星通过测量地球重力场的变化,可以间接反映地表质量的分布和变化,从而监测到地壳的微小运动。而InSAR则利用雷达影像的相位信息,通过干涉处理获取地表形变的三维信息。这两种数据源在地质灾害监测中具有极高的精度和敏感性,能够提前发现地质灾害的征兆,为灾害的预防和治理提供科学依据。

1.2 数据融合技术

多源数据融合是提高水工环地质灾害监测精度的重要手段。根据融合层次的不同,数据融合可分为像素级融合、特征级融合和决策级融合。像素级融合是直接在原始数据层进行融合,能够保留最多的信息,提高影像的分辨率和清晰度,有助于精确识别地质灾害的细微特征。特征级融合则是对提取出的特征信息进行融合,能够减少数据冗余,提高监测的针对性和准确性。通过融合不同数据源的特征,可以更全面地描述地质灾害的时空分布和演化规律。决策级融合是在最高层次上进行融合,能够综合考虑多种数据源的信息,提高监测结果的可靠性和稳定性。这种方法能够降低误报和漏报的风险,为地质灾害的预警和决策提供更为准确的信息支持。

2 水工环地质灾害监测多源遥感数据处理与分析方法

2.1 数据预处理

数据预处理是多源遥感数据处理与分析的首要步骤,对于确保数据质量和后续分析的准确性至关重要。 预处理过程主要包括辐射校正、几何校正以及云去除等 关键环节。辐射校正旨在消除传感器在获取数据时受到 的辐射干扰,如大气吸收、散射等,以恢复地表的真实 反射特性。这一步骤能够确保遥感数据的辐射一致性, 为后续的地表特征提取和分类提供准确的基础。几何校 正是对遥感影像进行空间位置的校正,以消除由于传感器视角、地球曲率等因素导致的图像几何失真^[2]。通过几何校正,可以将遥感影像准确地投影到地理坐标系中,为地质灾害的精确监测提供空间定位基础。云去除则是针对光学遥感数据中的云覆盖问题进行处理,通过云检测算法识别并去除云层遮挡的区域,以获取更为清晰的地表信息。这一步骤对于提高遥感数据的可用性和监测精度具有重要意义。

2.2 特征提取与识别

在多源遥感数据处理与分析中,特征提取与识别是 至关重要的一环,它直接关系到地质灾害监测的准确性 和效率。以下是几个关键的特征提取与识别方法:变化 检测是通过对时间序列遥感数据进行分析, 识别地表覆 盖和形态随时间发生的变化。这种方法能够捕捉到地质 灾害发生前后的地表特征变化,如植被覆盖度的减少、 土体的裸露、水体的增减等,从而为地质灾害的及时发 现和预警提供有力依据。通过对比不同时间点的遥感影 像,可以准确地定位变化区域,并进一步分析变化的原 因和趋势。形变监测则主要依赖于InSAR技术。InSAR通 过测量地表形变引起的雷达信号相位变化,可以高精度 地监测地表形变情况。在地质灾害监测中, InSAR技术 能够识别出潜在的滑坡体、地面沉降等形变现象, 为地 质灾害的预测和防治提供关键信息。通过对形变数据的 时空分析, 可以揭示地质灾害的发育规律和潜在风险区 域。纹理分析与分类则是基于机器学习算法对地表特征 进行分类和识别。通过提取遥感影像中的纹理特征,如 亮度、对比度、均匀性等,结合地表覆盖类型、地形地 貌等辅助信息,可以对地表进行精细分类,识别出灾害 易发区。这种方法能够综合考虑多种因素,提高灾害识 别的准确性和可靠性, 为地质灾害的预防和治理提供科 学依据。

2.3 灾害风险评估模型

为了更全面地评估水工环地质灾害的发生可能性和 危害程度,需要构建一个基于多源遥感数据的灾害风险 评估模型。这一模型将融合地质、气象等多种信息源, 以实现更为精准和全面的灾害风险预测。在模型构建过 程中,首先会整合来自不同遥感平台的数据,包括光学 遥感、雷达遥感、无人机遥感以及重力卫星等,这些数 据将为提供地表覆盖、地形地貌、地表形变等多维度的 信息。同时,还会引入地质构造、岩土性质、历史灾害 记录等地质信息,以及降雨量、气温、风速等气象数 据,以全面反映灾害发生的背景环境。接下来,将运用 数据挖掘和机器学习技术,对这些多源信息进行深度分 析和融合。通过特征提取、关联规则挖掘等手段,可以揭示出灾害发生与各种因素之间的潜在联系,进而构建出灾害风险评估指标体系。这一体系将涵盖灾害发生的概率、影响范围、危害程度等多个方面,为灾害风险的量化评估提供有力支持^[3]。最后,将利用构建的灾害风险评估模型,对特定区域进行灾害风险预测和评估。通过输入实时的遥感数据和气象信息,模型可以输出该区域未来一段时间内灾害发生的可能性和危害程度,为相关部门的灾害预防和应急响应提供科学依据。同时,还可以根据评估结果,划分出不同风险等级的区域,为灾害防治资源的合理配置和优先排序提供指导。

3 监测与预警系统构建

3.1 系统架构设计

在水工环地质灾害监测与预警的领域,需要构思一 个综合性的系统框架,旨在整合数据采集、处理、分析 与预警功能,并强调各个模块之间的协同合作与流畅 运作。该系统的核心架构由四大主要模块构成:数据采 集、数据处理、数据分析以及预警发布。数据采集模块 被设计为从多种来源获取实时数据,这包括遥感数据、 地质监测设备的数据以及气象站的信息, 确保所收集数 据的全面覆盖与精确性。数据处理模块则承担起对原始 数据进行预处理、清洗与整合的任务, 为后续的深入分 析提供坚实的数据支撑。这一模块将确保数据的准确 性、一致性和时效性, 为分析工作奠定良好基础。数据 分析模块是系统的核心"智囊",它将运用先进的数据 分析技术和算法,深入挖掘数据中的潜在风险特征,并 预测地质灾害的可能发展趋势。此模块将综合考虑地 质、气象等多方面的信息,以实现灾害风险的全面评 估。预警发布模块则根据数据分析的结果,负责及时、 准确地发布地质灾害预警信息。它将通过多种通讯方 式,确保预警信息能够迅速传达至相关部门和人员,以 便他们能够及时响应并采取措施,有效减轻灾害的影 响。此外,系统还应规划一个反馈与优化模块,用于收 集用户的使用反馈和系统的监测数据,以便对系统进行 持续的改进和优化。这一模块将确保系统能够不断适 应新的需求和挑战,持续提升监测与预警的准确性和 效率。

3.2 预警指标与阈值设定

在构建水工环地质灾害监测与预警系统时,强烈建议要科学、合理地设定预警指标和阈值。这应基于对历史灾害数据的深入挖掘和实时监测数据的细致分析,从而识别出那些与地质灾害紧密相关的关键要素。为了做到这一点,可以借助统计分析和数据挖掘技术,找出地

表形变、降雨量、地下水位等因子与灾害发生之间的关联。随后,结合地质专家的专业知识和实践经验,可以为这些关键因子设定预警指标,并确定相应的阈值。这些阈值应当既能反映灾害发生的可能性,又能体现灾害的潜在危害程度,以确保预警的准确性和时效性。

3.3 信息发布与应急响应策略建议

为了确保预警信息能够迅速、准确地传达给相关部门和公众,提议建立一套高效、多元的信息发布机制。这可以包括利用短信、电子邮件、社交媒体等多种渠道进行信息发布,以确保信息的广泛覆盖和及时传播。同时,还建议制定一套详尽的应急响应预案。当预警信息发布后,相关部门应能立即根据预案采取行动,如组织人员疏散、启动抢险救援等。此外,加强各部门之间的沟通与协作也至关重要,以确保在灾害发生时能够形成合力,迅速有效地应对。通过科学设定预警指标与阈值,并建立高效的信息发布与应急响应机制,可以大大提升水工环地质灾害监测与预警系统的效能,为保障人民生命财产安全提供有力支撑。

4 面临的挑战与未来展望

4.1 面临的挑战

在水工环地质灾害监测与预警的实践中, 面临着多 重挑战,这些挑战不仅考验着的技术能力,也促使不断 探索和创新。首先,数据处理与存储的海量性是一个不 容忽视的问题。随着遥感技术的不断进步和监测设备的 日益增多, 获取的数据量呈现爆炸式增长。如何高效地 处理这些海量数据,确保数据的准确性和完整性,同时 实现数据的快速存储和便捷访问, 是必须面对的技术难 题。其次,多源数据间的时空匹配问题也是一大挑战[4]。 不同来源的数据往往具有不同的时间分辨率和空间分辨 率,如何将这些数据在时间和空间上进行有效匹配,以 形成全面、准确的灾害监测与预警信息,需要深入研究 并开发相应的算法和技术。最后, 预警模型的准确性和 泛化能力也是需要关注的重点。地质灾害的发生具有复 杂性和不确定性,如何构建一个能够准确预测灾害发生 并适应不同地质环境和气象条件的预警模型, 是必须攻 克的技术难关。

4.2 未来展望

尽管面临着诸多挑战,但对水工环地质灾害监测与 预警的未来充满信心。随着技术的不断进步和创新,有 理由相信,这些挑战将逐渐被克服。首先,深度学习 在遥感数据处理中的应用前景广阔。深度学习技术具有 强大的数据处理和特征提取能力, 能够自动从海量数据 中挖掘出有价值的信息。将深度学习应用于遥感数据处 理,有望提高数据处理的效率和准确性,为灾害监测与 预警提供更加精准的数据支持。其次,实时数据处理与 智能预警系统的发展也将为灾害防治带来新的突破。通 过实时处理和分析监测数据,可以及时发现灾害的苗 头,并迅速发布预警信息。同时,智能预警系统能够根 据灾害的发展情况自动调整预警级别和应对措施,提高 预警的针对性和有效性。最后, 跨学科融合将为灾害预 测提供新的视角和方法。地质灾害的发生涉及地质、气 象、水文等多个领域的知识,通过跨学科融合,可以更 加全面地了解灾害的发生机理和发展规律,从而提升灾 害预测的科学性和准确性。未来,将继续加强与其他学 科的交流与合作,共同推动水工环地质灾害监测与预警 技术的发展和创新。

结语

多源遥感数据为水工环地质灾害的监测与预警提供了 强有力的技术支撑。通过数据的有效整合、高效处理与深 入分析,结合先进的预警模型,可以显著提高灾害预警的 准确性和时效性。未来,随着技术的不断进步和跨学科合 作的深化,水工环地质灾害的监测与预警将更加智能化、 精准化,为人类社会的安全与发展保驾护航。

参考文献

- [1]彭彪.水工环地质监测技术在地质灾害治理中的应用[J].中国减灾,2024,(15):52-53.
- [2]张健.水工环地质监测技术在地质灾害治理中的应用[J].现代盐化工,2024,51(02):82-83+86.
- [3]刘国谋,徐玲俊.水工环地质监测技术在地质灾害治理中的应用[J].价值工程,2022,41(29):133-135.
- [4]李鹏,王鹏.基于物联网的矿山水工环地质灾害风险预警系统应用[J].中国金属通报,2021,(03):196-197.