建筑智能化工程的施工技术要点分析

贾云辉

内蒙古天行安全技术有限公司 内蒙古 呼和浩特 010000

摘 要:随着信息技术的飞速发展,建筑智能化已成为现代建筑的重要趋势。建筑智能化工程涉及多个专业领域,包括通信、计算机网络、监控等技术的集成,旨在为用户提供安全、高效、舒适、便利的综合服务环境。本文将从信号线缆和电力电缆的敷设、智能化设备安装与调试、综合布线系统、安全防范系统等方面,详细分析建筑智能化工程的施工技术要点。

关键词:建筑智能化工程;施工;技术要点

引言

建筑智能化工程是信息技术在建筑领域的综合应用,它通过集成各种先进技术,实现对建筑设备的自动检测与优化控制、信息资源的优化管理。随着智能化技术的不断进步,建筑智能化工程在住宅、商业、工业等多个领域得到了广泛应用。本文将重点分析建筑智能化工程施工过程中的关键技术要点。

1 建筑智能化工程施工前的准备工作

1.1 施工图纸的审核与设计交底

在建筑智能化工程施工前,施工图纸的审核与设计 交底是至关重要的一环。这一过程不仅关乎到整个工程 的顺利进行, 更是确保工程质量、避免后期返工或修改 的关键步骤。施工图纸设计完成后,需由专业的审核团 队进行细致入微的审查。这些审核人员需具备丰富的工 程经验和深厚的专业知识,能够准确识别图纸中的每一 处细节,确保图纸内容既符合设计规范,又满足实际施 工需求。他们会对图纸中的各个部分进行逐一核对,包 括设备布局、线路走向、材料规格等, 以确保整个工程 的施工设计指标得以全面实现。在审核过程中,一旦发 现图纸存在技术失误或与实际施工现场不符的情况, 审 核团队会立即与施工方和设计部门进行紧密沟通。这种 沟通是双向的, 既需要审核团队清晰、准确地指出问题 所在,也需要施工方和设计部门积极反馈,共同探讨解 决方案。通过多次的沟通协调,确保施工图纸得到及 时、准确的修改,以符合施工现场的实际情况[1]。此外, 设计交底也是施工图纸审核过程中的重要环节。设计团 队需要向施工方详细解释图纸的设计理念、技术要点和 注意事项,确保施工方对图纸内容有全面、深入的理 解。这不仅有助于施工方更好地把握施工重点,还能有 效避免在施工过程中因理解偏差而导致的错误或遗漏。

1.2 施工材料与设备的选购与验收

在建筑智能化工程的筹备阶段,施工材料与设备的 选购与验收是确保工程质量与进度的关键环节。智能化 建筑对施工材料和设备的要求极高, 因为它们不仅关乎 建筑的物理结构, 更直接影响到智能化系统的运行效果 与稳定性。在选购过程中,项目团队需首先明确智能化 系统设备供应商与被监控设备供应商之间的责任界面, 确保双方提供的设备与材料能够无缝对接,避免后续安 装与调试中的不兼容问题。这要求项目团队具备深厚的 专业知识,能够准确识别各类设备与材料的性能参数, 以及它们在智能化系统中的角色与定位。同时, 选购时 还需严格对照设计标准与国家标准,确保所选设备与材 料的型号规格准确无误。这包括但不限于线缆的规格、 传感器的精度、控制设备的兼容性等。项目团队应建立 详细的采购清单,并逐一核对每一项设备与材料的合规 性,确保它们均能满足智能化建筑的高标准要求。在设 备与材料进场后,验收管理同样至关重要。项目团队应 组织专业人员进行全面的质量检验,包括外观检查、性 能测试以及功能验证等。对于发现的问题或不符合项, 应立即与供应商沟通,及时退换或整改,确保所有进场 材料与设备均符合规范的施工标准。

2 建筑智能化工程施工过程中的技术要点

2.1 信号线缆和电力电缆的敷设

信号线缆和电力电缆作为建筑智能化工程的神经与血脉,其敷设质量直接关系到整个系统的稳定运行与性能表现。在施工过程中,必须严格遵守以下技术要点,以确保线缆敷设的规范性与可靠性。首先,对于平行敷设与交叉敷设的情况,需严格控制信号线缆与电力电缆之间的间距。当两者平行敷设时,应确保其间距不小于0.3米,以有效隔绝电力电缆产生的电磁干扰,保障信号线缆的传输质量。而在交叉敷设时,建议采用直角交叉方式,以进一步减小电磁干扰的潜在影响,确保信号传

输的稳定性。其次,线缆的弯曲半径是保障线缆机械性能与使用寿命的关键因素。对于多芯线缆而言,其最小弯曲半径应严格大于线缆外径的6倍。这一要求旨在避免线缆在敷设过程中因过度弯曲而受损,从而确保线缆的长期稳定运行。在穿管敷设方面,需严格区分电源线、信号线与控制线的敷设路径。为避免相互干扰,这三类线缆应分别穿管敷设^[2]。然而,在低压供电场景下,考虑到实际施工的便利性与成本因素,电源线与信号线、控制线可酌情同管敷设,但需确保线缆间的隔离与保护措施到位。最后,对于电缆沟内的线缆敷设顺序,应遵循高压电缆在上、低压电缆居中、智能化线缆在下的原则。这一敷设顺序旨在减少电磁干扰与高温腐蚀对智能化线缆的影响,确保智能化系统的稳定运行与长期性能表现。通过精细施工与严格把控,为建筑智能化工程奠定坚实的基石。

2.2 智能化设备安装与调试

智能化设备的安装与调试是建筑智能化工程中的核 心环节,直接关系到整个系统的性能表现与稳定运行。 为确保这一关键步骤的顺利进行,施工过程中需严格遵 守以下具体要点。在设备选型与检查阶段,项目团队应 根据设计要求,精心挑选符合规格与性能要求的设备。 选型过程中, 需综合考虑设备的品牌信誉、技术成熟度 以及售后服务等因素。设备到场后,应进行全面的外观 检查与功能测试。外观检查旨在确保设备无明显损伤或 瑕疵, 而功能测试则通过模拟实际运行环境, 验证设备 的各项性能指标是否达标,为后续安装奠定坚实基础。 进入设备安装阶段,施工团队应严格按照施工图纸与安 装说明书进行操作。对于设备的安装位置与固定方式, 需精确把控,确保设备位置准确、固定牢靠。特别对于 摄像机、传感器等需要精确对位的设备,应使用专用校 准工具进行精细调整,以确保其捕捉或感应的准确性与 稳定性。系统调试阶段则更为关键,需分为单体设备调 试、局部或区域调试以及整体系统调试三个层次进行。 单体设备调试旨在验证每台设备的独立运行能力,确保 其功能正常、性能稳定。局部或区域调试则是将相邻或 相关设备组合起来,测试其间的通信与协作能力。最 后,整体系统调试则是将所有设备纳入统一系统,进行 全面测试与调整,确保系统能够协同运行,满足设计要求 与实际应用需求。通过这三个层次的逐步调试,可以及时 发现并解决问题,确保智能化系统的高效稳定运行。

2.3 综合布线系统

综合布线系统作为建筑智能化工程的神经中枢,其 重要性不言而喻。它不仅承载着各类信息设备的连接任

务, 更是实现信息高效传输与资源共享的关键所在。因 此,在施工过程中,必须对综合布线系统的每一个环节 都给予高度重视。在布线设计阶段,需充分考虑建筑物 的实际结构和使用需求。这包括建筑物的楼层分布、房 间功能、人员流动等因素,以确保线缆的走向和敷设方 式既符合实际需求, 又便于日后的维护与管理。同时, 为了应对未来可能的技术升级或设备扩展, 应在设计中 预留足够的线缆长度和接口数量。这样, 当新的设备或 技术出现时, 能够迅速而方便地将其融入现有系统, 而 无需进行大规模的布线改造。线缆的选择同样至关重 要。应根据传输距离和信号要求,精心挑选合适的线缆 类型和规格。例如,对于长距离传输,单模光纤因其传 输距离远、衰减小的特点而成为首选; 而在距离较短的 情况下, 多模光纤则因其成本低、易于连接的优势而更 受欢迎[3]。此外,还应考虑线缆的抗干扰能力、耐用性等 因素,以确保其在复杂环境中仍能保持稳定可靠的传输 性能。在线缆敷设阶段,规范操作同样不可或缺。应避 免线缆的过度弯曲和扭结, 以免损害其内部结构或影响 传输性能。同时,使用专用工具进行固定和保护也是必 不可少的步骤。这些工具能够确保线缆在敷设过程中保 持稳定的位置,避免受到外力干扰或损坏。

2.4 安全防范系统

安全防范系统作为建筑智能化工程的重中之重,其 施工过程中的每一个细节都直接关系到建筑物与人员的 安全保障。为确保这一系统的高效运行与可靠性,必须 从系统设计、设备安装到系统调试,每一个环节都严格 把关。在系统设计阶段,需深入剖析建筑物的安全需求 与潜在风险点。这包括建筑物的地理位置、周边环境、 人员流动情况等多方面因素。基于这些分析,应合理规 划监控区域与报警点的布局,确保无死角覆盖,同时预 留足够的扩展空间以应对未来可能出现的新风险。此 外,还需确保安全防范系统与其他智能化系统的紧密联 动与集成,实现信息的共享与协同作战,提升整体安全 防范水平。设备安装阶段,施工团队应严格按照施工图 纸与安装说明书进行操作,确保每一台设备都能精准定 位、牢固安装。对于摄像机、探测器等需要精确对位的 设备,应使用专业的校准工具进行精细调整,以确保其 能够捕捉到最准确、最全面的信息。同时,还应注重设 备的防护与隐蔽性,避免其被恶意破坏或干扰。系统调 试阶段则是检验整个安全防范系统成效的关键环节。应 逐一检查各设备的运行状态与通信情况,确保它们能够 正常、稳定地工作。此外,还需进行联动测试,模拟实 际的安全事件,检验系统能否迅速响应、有效联动,并

与其他智能化系统形成合力,共同应对安全风险。通过 这些全面而细致的布局与调试,能够筑牢建筑的安全防 线,为人员与财产的安全提供有力保障。

3 建筑智能化工程的施工管理要点

3.1 质量控制

质量控制是建筑智能化工程施工管理的基石。为确 保施工质量符合设计要求和相关标准,必须建立一套严 格而完善的质量控制体系。这一体系应涵盖从材料采 购、设备选型到施工安装、系统调试的每一个环节,确 保每一道工序都经过严格的监督和检查。在施工过程 中,应设立专门的质量监督小组,负责对施工过程中的 关键节点进行实时监控。通过现场巡查、抽样检测等方 式,及时发现施工中存在的问题和不足。对于发现的问 题,应立即进行整改,并追溯问题根源,防止类似问题 的再次发生。同时,还应加强与设计单位和监理单位的 沟通协作,共同对施工质量进行把关,确保施工质量全 面符合设计要求和相关标准。此外,还应注重施工过程 中的质量记录与档案管理。每一道工序的施工记录、质 量检查报告等资料都应详细记录并妥善保存,以便后续 的质量追溯与评估。通过这些措施,能够构建起一道严 密的质量控制防线,为建筑智能化工程的高质量完成提 供有力保障。

3.2 进度管理

进度管理是建筑智能化工程施工管理的关键。为确保施工进度按计划进行,必须在施工前制定一份详细的施工进度计划。这份计划应明确各阶段的任务、时间节点以及责任人,形成清晰的施工路线图。在施工过程中,应定期对施工进度进行检查和评估,通过对比实际进度与计划进度,及时发现进度偏差。对于出现的延误情况,应立即分析原因,调整施工计划,并采取有效措施追赶进度。这包括增加施工力量、优化施工流程、调整施工顺序等。同时,还应加强与各施工单位的沟通协调,确保各环节之间的无缝衔接,避免因沟通不畅导致的进度延误。为更好地掌控施工进度,还可以利用现代科技手段,如施工管理系统、进度监控软件等,对施工进度进行实时跟踪和预测^[4]。这些工具能够帮助更直观地

了解施工进度情况,及时发现潜在问题,并采取相应措施进行应对。通过这些精细化规划与管理,能够确保建筑智能化工程的施工有序进行,按时完成各项任务。

3.3 安全管理

施工安全是建筑智能化工程施工过程中的首要任务。为确保施工安全,必须建立健全的安全管理制度,并加强安全教育和培训,提高施工人员的安全意识。首先,应制定详细的安全操作规程和应急预案,明确施工过程中的安全要求和应对措施。这些规程和预案应涵盖施工现场的各个方面,包括用电安全、高空作业安全、设备操作安全等。同时,还应加强对施工人员的安全教育和培训,确保他们熟悉安全操作规程,掌握必要的安全技能和应急处理能力。其次,应定期进行安全检查,及时发现和消除安全隐患。这包括施工现场的日常巡查、专项安全检查以及季节性安全检查等。在检查过程中,应重点关注施工现场的安全设施、设备状况、作业环境等方面,对于发现的问题应立即进行整改,并追究相关责任人的责任。

结语

建筑智能化工程施工技术要点涉及信号线缆和电力 电缆的敷设、智能化设备安装与调试、综合布线系统、 安全防范系统等多个方面。在施工过程中,应严格按 照规范操作,确保施工质量和系统性能。同时,应不断 学习和掌握新技术、新方法,提高施工水平和智能化水 平,为用户提供更加安全、高效、舒适、便利的综合服 务环境。

参考文献

[1]丁玲.建筑智能化工程的施工技术要点分析[J].科技创新与应用,2021,11(26):149-151.

[2]杨芳芳.住宅建筑智能化工程项目施工管理关键点研究[J].居舍,2024,(24):150-153.

[3]李克峰.建筑智能化工程项目施工管理关键点研究 [J].绿色建造与智能建筑,2024,(07):92-94.

[4]钟晓达.建筑智能化工程项目施工管理要点[J].散装水泥,2023,(04):57-59.