深基坑降水控制要点及对地表沉降的影响分析

段永祥

内蒙古建地岩土工程有限责任公司 内蒙古 呼和浩特 010010

摘 要:本文聚焦于深基坑降水控制的要点及其对地表沉降的影响分析。文章概述了深基坑降水工程的重要性与挑战,详细探讨降水井布置与深度的优化策略、先进降水技术的应用、降水过程中的实时监测与调整机制,以及回灌与止水帷幕等辅助措施的实施。通过理论分析与实际案例相结合,本文揭示了降水控制不当可能引发的地表沉降风险,并提出针对性的防控策略。研究表明,科学合理的降水控制是保障深基坑工程安全与周边环境稳定的关键。

关键词:深基坑;降水控制;地表沉降的影响

1 深基坑降水及地表沉降相关理论基础

1.1 深基坑降水理论

深基坑降水是基坑施工中的关键环节,旨在通过降 低地下水位,增加边坡和坑底的稳定性,减少被开挖土 体的含水量,便于挖土作业,并防止突涌等工程事故 的发生。深基坑降水主要分为疏干降水和减压降水两种 类型。疏干降水的主要目的是有效降低开挖深度范围内 的地下水位标高,以及被开挖土体的含水量。这有助于 提高边坡的稳定性,增加坑内土体的固结强度,为机械 挖土提供干作业施工条件。疏干降水根据基坑周边止水 帷幕的设置情况,可分为封闭型、敞开型和半封闭型三 种。封闭型疏干降水适用于基坑周边设置了止水帷幕, 隔断基坑内外含水层之间地下水水力联系的情况; 敞开 型疏干降水则适用于基坑未设置止水帷幕,采用大放坡 开挖的情况; 半封闭型疏干降水则适用于基坑周边止水 帷幕深度不足, 仅部分隔断基坑内外含水层之间地下水 水力联系的情况。减压降水的主要目的是及时降低下部 承压含水层的承压水水头高度, 防止基坑底部突涌的发 生,确保施工时基坑底板的稳定性。减压降水根据减压 井过滤器底端的深度与止水帷幕底端深度的关系,可分 为坑内减压降水和坑外减压降水两种。坑内减压降水要 求减压井过滤器底端的深度不超过止水帷幕底端的深 度,以确保抽出的地下水主要来自于基坑内的承压含水 层; 坑外减压降水则要求减压井过滤器底端的深度不小 于止水帷幕底端的深度,以保证坑外减压降水效果。在 实际操作中,深基坑降水需要综合考虑地质条件、基坑 形状、开挖深度、地下水位、降水目的和要求等因素, 选择合适的降水方法和设备。降水运行应与基坑开挖施

作者简介:段永祥(1990.09-),男,硕士研究生,内蒙古巴彦淖尔市人,主要从事岩土工程、水文地质勘察、环境地质研究.

工互相配合,确保降水效果和施工安全。降水过程中, 应对地下水位进行全程跟踪监测,及时调整降水方案, 以应对可能出现的异常情况。

1.2 地表沉降理论

地表沉降是深基坑降水等地下工程活动中常见的环 境问题之一。地表沉降的发生与土体的变形特性和水的 渗流情况密切相关。在深基坑降水过程中,由于地下水 位的下降, 土体中的孔隙水压力减小, 有效应力增加, 导致土体产生压缩变形。这种变形过程分为三个阶段: 粘性土固结阶段、粘性土和砂性土固结压密阶段、砂性 土压密阶段[1]。在粘性土固结阶段,由于粘性土的渗透 性较差, 孔隙水释放缓慢, 土体压缩变形主要发生在靠 近降水井的附近区域。随着降水的持续进行, 粘性土和 砂性土共同进入固结压密阶段, 此时土体的变形范围逐 渐扩大。最后,在砂性土压密阶段,由于砂性土具有良 好的渗透性, 孔隙水迅速排出, 土体变形主要表现为砂 颗粒的重新排列和压密。地表沉降的计算实质上包含了 确定含水层水位与抽取量之间的关系(水流模型)和计 算由于水位变化引起含水层本身的变形规律(土力学模 型)两个过程。这两个过程耦合成为地面沉降的数学模 型,为地表沉降的预测和控制提供了理论基础。在实际 工程中,应根据具体情况选择合适的沉降分析方法或数 值分析法进行计算和分析。

2 深基坑工程在现代城市建设中的重要性

深基坑工程在现代城市建设中的重要性不言而喻, 它是高层建筑、地铁线路、地下综合管廊等大型基础设 施建设的基石。随着城市化进程的加速,城市空间日益 紧张,向地下拓展成为解决城市空间需求的重要途径。 深基坑工程作为地下空间开发的关键技术,不仅直接关 系到建筑物的安全稳定,还深刻影响着周边环境的保护 与城市功能的完善。在高层建筑的建设中,深基坑工程 为地基处理提供了坚实的基础,确保建筑物能够承受巨大的垂直与水平荷载,保障其长期安全使用,深基坑的稳定性和防水性能直接关系到建筑物的耐久性和使用寿命。对于地铁等交通基础设施,深基坑工程更是不可或缺,地铁车站和隧道的开挖深度大、地质条件复杂,对基坑的支护、降水、变形控制等提出极高的要求。深基坑工程的成功实施,不仅保障地铁施工的安全,也为地铁线路的平稳运行提供了保障。深基坑工程在地下综合管廊、地下停车场等城市基础设施建设中同样发挥着重要作用。这些设施的建设不仅提高城市空间的利用效率,还改善城市环境,提升城市功能。

3 深基坑降水对地表沉降的影响分析

3.1 降水引发地表沉降的机理

深基坑降水过程中,地下水位的降低会导致土体中的孔隙水压力减小,进而使得土体的有效应力增加。这种有效应力的增加会导致土体产生固结压密,进而引发地表沉降。具体来说,当基坑降水时,潜水水位每降低一定距离,如1米,土体中的有效应力就会相应增加,如增加10kPa。这种有效应力的增量使得土体颗粒之间的排列更加紧密,导致土体体积减小,最终反映到地表上,形成地表沉降,降水还会改变土体的平衡状态,破坏原有的土、水平衡,使得土体的力学性质、储水性和透水性发生变化,进一步加剧地表沉降的发生。

3.2 降水对地表沉降的影响因素

降水对地表沉降的影响受到多种因素的制约。地层 变形性质是决定降水引发沉降的重要因素。不同变形特 性的地层在相同降深下的响应是不同的, 会产生不同幅 值的沉降。例如,如果降水目标含水层是砾石或者砂, 虽然含水层产生较大降深,但目标含水层本身的沉降有 限; 而与目标含水层相邻且有水力联系的越流含水层, 特别是软土地层,因排水和变形协调也可能产生沉降[2]。 孔压消散速率也是影响地表沉降的关键因素, 高渗透性 地层降水沉降显现快,低渗透性地层沉降显现慢,这与 孔隙水压力消散的速度密切相关。水位降深、周边建筑 物的性质和基础形式等也会对地表沉降产生影响, 水位 降深越大,降水时间越长,具有流变特性的地层蠕变也 会产生地面沉降的时间效应。而周边建筑物的性质和基 础形式则决定了沉降对建筑物的影响程度,如采用柔性 的浅基础,则在该建筑地基附近产生的地面沉降可能直 接反映至建筑物,产生沉降、变形、开裂等。

3.3 降水引起的地表沉降时空分布特征

降水引起的地表沉降具有时空分布特征。在空间 上,由于基坑降水一般带有止水帷幕,降水过程类似于

"超级大井"利用坑内的抽水井实现水位的降低,相应 在坑外产生降深,形成漏斗。降落漏斗的形状与基坑的 形状、内部的分隔及基坑降水的次序有关。平面上,沉 降的分布和基坑降水目标含水层降落漏斗的分布基本一 致。在时间上,从现场水文地质抽水试验开始起,水位 降深所产生附加应力将引起地层土体发生固结变形,抽 水井附近产生和水位降落漏斗相对应的地面沉降漏斗。 在抽水时间有限的情况下,大部分越流含水层的主固结 沉降尚未显现, 停止抽水后目标含水层将出现明显回 弹。但对于水位降深敏感的地层,短期抽水也可能产生 大幅不可恢复的沉降。之后进入降水运行期,降落漏斗 随着抽水时间的延续逐渐发展,降深增加,影响范围扩 大,直至稳定。当降水工作结束停止抽水后,地层会产 生部分回弹, 部分沉降会恢复, 但目前在降水结束后地 面沉降恢复的监测工作尚不够充分, 还未充分掌握其回 弹比例和时空特性。

4 深基坑降水控制优化策略

4.1 优化降水井布置与深度

深基坑降水控制优化策略的首要任务是优化降水井 的布置与深度。降水井的布置不仅关系到降水效率,还 直接影响到地表沉降的控制效果。合理的降水井布置 应遵循"均匀分布、重点加强"的原则,确保降水效果 均匀,避免局部过度降水导致的地表沉降。在降水井的 布置上,应充分考虑基坑的形状、大小、地质条件以及 地下水位等因素。对于形状规则的基坑,降水井可沿基 坑周边均匀布置,形成环状降水系统;对于形状不规则 的基坑,则应根据实际情况灵活调整降水井的位置和数 量,确保降水效果覆盖整个基坑区域。降水井的间距也 应根据地质条件和降水要求进行合理设置, 避免间距过 大导致降水效果不佳,或间距过小造成资源浪费。降水 井的深度是另一个关键因素,降水井的深度应根据目标 含水层的深度、地下水位以及降水要求来确定。一般来 说,降水井的深度应穿透目标含水层,并达到一定的隔 水层深度,以确保降水效果。过深的降水井不仅会增加 施工难度和成本,还可能对周边环境造成不利影响。因 此在确定降水井深度时,应进行详细的地质勘察和降水 试验, 以获取准确的地质和水文信息, 为降水井深度的 设计提供依据。降水井的孔径和井壁材料的选择也需考 虑, 孔径的大小应根据降水井的出水量和抽水设备的性 能来确定,以确保抽水效率。井壁材料则应选择耐腐 蚀、耐磨损、强度高的材料,以确保降水井的长期稳定 运行[3]。

4.2 采用先进的降水技术与方法

随着科技的进步,越来越多的先进降水技术与方法 被应用于深基坑降水工程中。这些技术与方法不仅提高 降水效率,还降低地表沉降的风险。其中,井点降水 法是一种常用的降水方法,该方法通过在基坑周边或内 部设置降水井,利用抽水设备将地下水抽出,从而降低 地下水位。井点降水法具有降水效果好、施工简便等优 点,但也可能导致地表沉降等不利影响。在应用井点降 水法时,应严格控制降水井的布置、深度和抽水强度, 以减少地表沉降的发生。除了井点降水法外,还有电渗 降水法、化学注浆降水法等先进降水技术, 电渗降水法 利用电场作用使土体中的水分子定向移动, 从而达到降 水目的。该方法适用于低渗透性土层的降水工程,具有 降水速度快、降水效果好等优点。化学注浆降水法则通 过向地层中注入化学浆液, 改变土体的渗透性, 从而达 到降水效果。该方法适用于复杂地质条件下的降水工 程,但需注意化学浆液对环境的潜在影响。在选择降水 技术与方法时, 应充分考虑工程特点、地质条件、环境 要求等因素,选择最适合的降水方案。同时还应关注新 技术、新方法的研究与应用,不断提高降水工程的科技 含量和环保水平。

4.3 加强降水过程中的监测与调整

降水过程中的监测与调整是确保降水效果和地表沉 降控制的关键环节。在降水过程中,应设置地下水位观 测井和地表沉降观测点, 定期观测并记录相关数据。 地下水位观测井应布置在基坑周边和内部的关键位置, 以监测地下水位的变化情况。地表沉降观测点则应设置 在基坑周边和可能受降水影响的建筑物、道路等位置, 以监测地表沉降的发生和发展情况。在监测数据的基础 上,应及时分析降水效果和地表沉降的变化趋势,评估 降水方案的有效性和安全性。如发现异常情况,如地下 水位下降过快、地表沉降过大等,应立即停止降水作 业,并采取相应的调整措施,如增加降水井数量、调整 抽水强度等,以确保降水效果和地表沉降控制在预期范 围内。还应建立降水工程的信息管理系统,实现数据的 实时采集、分析和预警。通过信息管理系统,可以更加 直观地了解降水工程的进展情况,及时发现并解决问 题,提高降水工程的效率和安全性。

4.4 实施回灌与止水帷幕等辅助措施

在实施深基坑降水工程时,还可以采取回灌与止水 帷幕等辅助措施,以进一步控制地表沉降的发生。回灌 是一种有效的地表沉降控制措施,通过在降水井附近设 置回灌井,将抽取的地下水经过处理后回灌到地层中, 可以保持地下水位的稳定,减少地表沉降的发生。回灌 井的布置和回灌量的确定应根据实际情况进行合理设 计,以确保回灌效果。回灌水质也应符合相关标准,避 免对地下水环境造成污染[4]。止水帷幕则是一种有效的地 下水隔离措施,通过在基坑周边设置止水帷幕,可以切 断基坑内外含水层之间的水力联系, 防止地下水向基坑 内渗透, 从而控制地表沉降的发生。止水帷幕的材料和 施工工艺应根据地质条件、地下水位等因素进行合理选 择和设计。常见的止水帷幕材料包括水泥土搅拌墙、地 下连续墙等。在实施回灌与止水帷幕等辅助措施时,应 充分考虑工程特点、地质条件、环境要求等因素,制定 详细的施工方案和监测计划,还应加强施工过程中的质 量控制和安全管理,确保辅助措施的有效性和安全性。

结束语

深基坑降水控制不仅关乎工程自身的稳定性,更直接影响到周边地表沉降的控制效果。通过精准把握降水井布置、深度及降水技术的选择,结合严密的监测与适时调整机制,加之有效的辅助措施应用,可以显著降低地表沉降风险,确保深基坑工程的顺利实施与周边环境的和谐共生。未来,随着技术的不断进步与创新,深基坑降水控制将更加智能化、精细化,为城市地下空间的开发利用提供更加坚实的安全保障。

参考文献

[1]赵平,韩治勇.深基坑开挖引起的地表沉降变形及影响因素分析[J].黑龙江工业学院学报(综合版),2022,22(1):98-103.

[2]吕东兴,安少鹏. 深基坑降水控制要点及对地表沉降的影响分析[J]. 百科论坛电子杂志,2019(19):293-294.

[3]陈志永. 深基坑支护中降水设计的运用浅析[J]. 四川水泥, 2020(8):2-2.

[4]刘尚武. 基础施工中的深基坑支护和降水施工技术的探讨[J]. 门窗, 2021(24):2-2.