建设工程施工质量控制

吕先革 青岛青咨工程咨询有限公司 山东 青岛 266200

摘 要:本文阐述了施工质量控制的基础理论,包括核心要素、影响因素、理论框架和基本原则。详细介绍了施工质量控制的内容体系,涵盖施工准备、施工过程和竣工验收阶段。探讨了质量控制的方法与技术,如质量控制计划的制定、质量检查与验收手段、质量问题的分析与处理流程以及质量持续改进的策略。为施工质量控制提供了全面指导。

关键词:建设工程;施工质量控制;理论框架;内容体系;方法与技术

引言:建设工程施工质量控制是确保工程项目安全性、使用性和耐久性的关键环节。随着建筑业的快速发展,施工质量控制的重要性日益凸显。本文旨在深入探讨施工质量控制的基础理论、内容体系和方法与技术,为实际工程提供理论指导和实践参考。

1 施工质量控制的基础理论

1.1 施工质量的核心要素及影响因素

施工质量是建设工程项目的生命线,直接关系到工 程的安全性、使用性和耐久性。施工质量的核心要素主 要包括工艺质量、材料质量和构配件质量等。工艺质量 是指施工过程中所采用的技术方法、工艺流程和操作规 范的合理性与可靠性,它决定了工程施工的精准度和稳 定性。材料质量则是指工程所用材料的性能、规格和品 质是否满足设计要求,材料的质量直接影响工程的整体 质量。构配件质量则是指工程中使用的预制构件、配件 等的质量,它们的稳定性和可靠性是工程质量的重要组 成部分。影响施工质量的因素多种多样, 主要可以归纳 为五个方面:人、材料、机械、方法和环境。人是施工 活动的主体,施工人员的技能水平、质量意识和工作态 度对施工质量有着直接的影响[1]。材料作为工程的物质基 础,其质量的好坏直接关系到工程的质量。机械是现代 化施工不可或缺的手段, 机械的性能、状态和使用方式 都会影响施工质量。方法则包括施工方案、施工工艺和 技术措施等,它们的合理性与可行性是确保施工质量的 重要保障。

1.2 施工质量控制的理论框架和基本原则

施工质量控制的理论框架是基于全面质量管理的思想,通过计划、实施、检查和处理(PDCA)的循环过程,不断提升施工质量水平。在这个框架中,计划阶段主要是制定施工质量控制的目标、计划和标准;实施阶段则是按照计划和标准进行施工,确保施工过程符合

质量要求;检查阶段是对施工过程及结果进行检验和评估,发现问题并及时纠正;处理阶段则是对检查中发现的问题进行分析和处理,总结经验教训,为后续的施工质量控制提供参考。施工质量控制的基本原则包括预防为主、过程控制和全员参与。预防为主强调在施工前和施工过程中采取预防措施,避免质量问题的发生;过程控制则强调对施工过程的每一个环节进行严格控制,确保施工质量符合设计要求;全员参与则强调施工质量控制是全体施工人员的共同责任,每个人都应该积极参与到质量控制中来。

1.3 施工质量控制与工程质量管理之间的关系

施工质量控制是工程质量管理的重要组成部分,贯穿于工程施工的全过程。工程质量管理是一个系统性的工作,包括质量策划、质量控制、质量保证和质量改进等环节。施工质量控制作为其中的核心环节,负责确保施工过程符合设计要求和质量标准,是工程质量管理得以实现的基础。施工质量控制与工程质量管理之间也存在着相互促进的关系。一方面,施工质量控制为工程质量管理提供了有力的数据支持和决策依据;另一方面,工程质量管理也为施工质量控制提供了明确的目标和方向,推动了施工质量控制工作的不断深入和完善。

2 施工质量控制的内容体系

2.1 施工准备阶段

在施工准备阶段,施工质量控制的内容主要集中在施工队伍的组织与培训、施工图纸的会审与技术交底、施工材料与设备的检验等方面。施工队伍的组织与培训是施工质量控制的基础。一支高素质、专业技能过硬的施工队伍是确保施工质量的重要保障。在施工前,需要对施工队伍进行严格的筛选和组织,确保施工人员具备相应的资质和技能。还需要对施工人员进行系统的培训,包括施工工艺、操作规程、质量标准等方面的知

识,以提高施工人员的质量意识和专业技能。施工图纸 的会审与技术交底是施工质量控制的重要环节[2]。在施工 前,需要组织相关人员对施工图纸进行细致的会审,确 保施工图纸的准确性和可行性。会审过程中,需要重点 关注施工图纸中的关键部位、重要节点和特殊要求,确 保施工过程中能够准确无误地按照施工图纸进行施工。 会审完成后,还需要进行技术交底,将施工图纸中的技 术要求和施工注意事项详细告知施工人员,确保施工人 员能够充分理解并掌握施工图纸的内容。施工材料与设 备的检验是施工质量控制的关键环节。施工材料和设备 的质量直接影响施工质量的优劣。在施工前,需要对施 工材料和设备进行严格的检验,确保其质量符合设计要 求和相关标准。检验过程中,需要重点关注施工材料的 性能、规格、品质等方面,以及施工设备的性能、状 态、安全性等方面,确保施工材料和设备能够满足施工 需求。

2.2 施工过程阶段

在施工过程阶段,施工质量控制的内容主要集中在 工序质量控制点的设置与管理、关键工序和特殊过程的 质量控制措施、施工技术方案的实施与监督、施工记录 与质量报告的编制等方面。工序质量控制点的设置与管 理是施工质量控制的重要手段。通过设置工序质量控制 点,可以对施工过程中的关键工序和重要节点进行实时 监控和管理,确保施工过程的稳定性和可靠性。在设置 工序质量控制点时,需要充分考虑施工过程中的实际情 况和质量要求, 合理确定控制点的位置和控制范围, 并 制定相应的控制措施和管理办法。关键工序和特殊过程 的质量控制措施是施工质量控制的重点。关键工序和特 殊过程是施工过程中的难点和重点,对施工质量的影响 较大。需要针对这些工序和过程制定专门的质量控制措 施和管理办法,确保施工过程的顺利进行和质量的可控 性。具体措施可以包括加强施工过程中的监控和管理、 采用先进的施工工艺和技术、提高施工人员的技能水平 等。施工技术方案的实施与监督是施工质量控制的关键 环节。施工技术方案是施工过程中的指导性文件,对施 工质量起着决定性的作用。在施工过程中,需要严格按 照施工技术方案进行施工,确保施工过程的规范性和标 准化。还需要对施工技术方案的实施情况进行监督和检 查,及时发现并纠正施工过程中的问题和不足,确保施 工质量的稳步提升。施工记录与质量报告的编制是施工 质量控制的重要组成部分。施工记录是施工过程中的重 要资料,它记录了施工过程中的各种情况和数据,为施 工质量的评估和改进提供了有力的依据。

2.3 竣工验收阶段

在竣工验收阶段,施工质量控制的内容主要集中在 竣工验收的流程与标准、质量缺陷的整改与验收通过条 件、竣工资料的整理与归档等方面。竣工验收的流程与 标准是施工质量控制的最后一道关卡。在竣工验收过程 中,需要严格按照相关标准和规范进行验收,确保工程 质量的符合性和可靠性。验收过程中,需要重点关注工 程的整体质量、关键部位和重要节点的质量情况,以及 工程的功能性和安全性等方面。还需要对验收过程中发 现的问题和不足进行记录和反馈, 为后续的质量改进提 供依据。质量缺陷的整改与验收通过条件是竣工验收阶 段的重要环节。在验收过程中,如果发现工程质量存在 缺陷或不足,需要及时进行整改和处理。整改过程中, 需要制定详细的整改方案和计划, 明确整改责任人和整 改时限,确保整改工作的顺利进行。还需要对整改后的 工程质量进行再次验收和评估, 确保工程质量的符合性和 可靠性。只有满足验收通过条件后, 工程才能正式交付使 用。竣工资料的整理与归档是竣工验收阶段的必要工作。 竣工资料是工程过程中的重要资料,记录了工程的建设过 程和质量情况,为工程的后续管理和维护提供了有力的 依据[3]。在竣工验收完成后,需要及时对竣工资料进行整 理和归档,确保资料的完整性和可追溯性。还需要对竣 工资料进行分类和编号,方便后续的管理和查询。

3 施工质量控制的方法与技术

3.1 质量控制计划的制定方法

质量控制计划的制定是施工质量控制的首要任务, 它为整个施工过程提供了明确的质量目标和实施路径。 在制定质量控制计划时,目标设定和资源分配是两个核 心环节。目标设定是质量控制计划的基础。在设定质量 目标时,需要充分考虑工程项目的特点、业主的需求以 及相关法律法规的要求,确保质量目标既具有挑战性又 切实可行。目标设定应具体、明确,可量化,以便在施 工过程中进行实时监控和评估。例如, 可以设定混凝土 强度、钢筋焊接合格率、防水层厚度等具体指标,作为 施工质量控制的目标。资源分配是质量控制计划实施的 关键。在资源分配过程中,需要根据质量目标的要求, 合理配置人力、物力、财力等资源。这包括确定施工队 伍的规模、技能水平要求,选择合格的材料供应商,配 备必要的施工设备和检测仪器等。资源分配应充分考虑 施工过程的实际需求和资源约束,确保资源的有效利用 和最大化效益。除了目标设定和资源分配,质量控制计 划还应包括质量控制点的设置、质量检验批的划分、质 量检查与验收的标准和程序等内容。这些内容的制定需

要充分考虑施工过程的复杂性和多变性,确保质量控制计划的灵活性和可操作性。

3.2 质量检查与验收的技术手段

质量检查与验收是施工质量控制的重要环节, 通过 对施工过程中的材料、构配件、工序等进行检验和验 收,确保施工质量符合设计要求和相关标准。在质量检 查与验收过程中, 抽样检验和全数检验是两种常用的技 术手段。抽样检验是从批量产品中随机抽取一部分作为 样本进行检验的方法。适用于大批量、连续生产的产品 或工序,可以在不破坏整体结构的前提下,对产品质量 进行快速、准确的评估。抽样检验需要遵循科学的抽样 原则和方法,确保样本的代表性和可靠性。全数检验则 是对全部产品或工序进行逐一检验的方法。适用于数量 较少、质量要求极高的产品或工序,可以确保每一个产 品或工序都符合设计要求和相关标准。全数检验虽然耗 时耗力, 但在某些关键部位或重要节点上, 却是必不可 少的检验手段。除了抽样检验和全数检验,质量检查与 验收还可以采用其他技术手段,如无损检测、理化试验 等。这些技术手段可以更加深入地了解产品的内在质量 和性能,为质量控制提供更加准确的依据。

3.3 质量问题的分析与处理流程

在施工过程中,难免会出现各种质量问题。对于这些问题的分析与处理,是施工质量控制的重要环节。质量问题的分析与处理流程通常包括问题发现、原因分析、措施制定和执行、效果验证等步骤。问题发现是质量问题分析与处理的起点。在施工过程中,需要通过定期的质量检查、巡检、抽查等方式,及时发现存在的质量问题。问题发现需要依靠敏锐的观察力和专业的质质量问题。问题发现需要依靠敏锐的观察力和专业的质质分析与处理的关键。在发现问题后,需要深入分析问题分析与处理的关键。在发现问题后,需要深入分析问题产生的原因,包括人为因素、材料因素、设备因素、环境因素等。原因分析需要充分运用专业知识和实践经验,确保分析的准确性和全面性。措施制定和执行是质量问题分析与处理的核心[4]。在分析问题原因后,需要针对问题制定具体的整改措施和执行计划,明确责任人和整改时限。措施制定需要充分考虑问题的严重性和紧迫

性,确保措施的有效性和可行性。执行过程中需要加强 监督和检查,确保措施得到切实执行。效果验证是质量 问题分析与处理的终点。在整改措施执行完毕后,需要 对整改效果进行验证和评估,确保问题得到彻底解决。

3.4 质量持续改进的策略与方法

质量持续改进是施工质量控制的重要目标,通过不断优化施工过程和管理方式,提升施工质量水平。质量持续改进的策略与方法主要包括PDCA循环和质量管理体系等。PDCA循环是一种科学的管理方法,它包括计划(Plan)、执行(Do)、检查(Check)和处理(Act)四个步骤。通过PDCA循环,可以不断发现问题、分析问题、解决问题,并总结经验教训,为后续的质量控制提供有力支持。PDCA循环需要持续进行,不断迭代和优化,确保质量持续改进的重要保障。通过建立完善的质量管理体系是质量持续改进的重要保障。通过建立完善的质量管理体系,可以明确质量管理的职责和流程,确保质量管理体系,可以明确质量管理的职责和流程,确保质量管理体系,可以明确质量管理体系需要充分考虑工程项目的特点和业主的需求,确保质量管理体系的适用性和有效性。还需要定期对质量管理体系进行审核和评估,及时发现并纠正存在的问题和不足。

结束语

本文全面介绍了建设工程施工质量控制的基础理论、内容体系以及方法与技术,为施工人员和管理人员提供了有益的参考和指导。在实际施工过程中,应严格按照相关标准和规范进行施工质量控制,确保工程质量的符合性和可靠性。还应不断探索和创新施工质量控制的方法和技术,推动施工质量控制工作的不断深入和完善。

参考文献

- [1]谢朝昌.建筑工程管理及施工质量控制措施探讨[J]. 砖瓦,2022,(06):117-119.
- [2]魏世颖.浅谈建筑工程施工技术质量控制措施[J].科技与创新,2022,(08):135-137.
- [3]李帅.建筑工程管理中施工质量控制的有效措施[J]. 建材发展导向,2022,20(04):118-120.
- [4]孙娣.建筑工程管理施工过程质量控制探究[J].大众标准化,2023(24):37-39.