道路桥梁施工和质量问题及措施

袁子童 山东省路桥集团有限公司 山东 济南 250000

摘要:本文探讨了道路桥梁施工的特点、常见质量问题及相应的解决措施。施工特点包括复杂环境、严格技术要求、长周期连续性以及复杂的组织协作。质量问题涉及路基路面、桥梁结构和附属设施,而解决措施则包括加强施工质量控制、强化桥梁结构施工质量管理、完善附属设施施工和加强施工管理。

关键词: 道路桥梁施工; 质量问题; 措施

引言

道路桥梁作为城市交通的重要组成部分,其施工质量直接关系到城市的运营效率和安全性。但是施工过程中常面临环境复杂、技术要求高、周期长等挑战,导致质量问题频发。本文旨在分析道路桥梁施工的特点、存在的质量问题,并提出有效的解决措施,以期提高施工质量,确保道路桥梁的安全性和耐久性。

1 道路桥梁施工特点

第一,施工环境极为复杂,道路桥梁项目往往位于 城市中心或繁华区域,周边环境多样且敏感。在此类环 境中施工,不仅要尽量减少对周边居民日常生活的干 扰,确保施工活动不会扰乱居民的正常生活节奏,还需 高度重视施工安全问题,采取严格措施防止因施工活动 引发任何安全事故,而且由于道路桥梁施工涉及政府部 门、居民、企业等众多利益相关方,施工进度必须得到 合理规划,以确保按时完成施工任务,维护各方的利 益。第二,道路桥梁施工的技术要求极为严格。作为城 市交通的关键节点, 其施工质量直接关系到城市交通的 运营效率和安全性, 所以在施工过程中, 必须严格遵循 相关技术标准,对每一施工环节进行精细化管理。第 三,道路桥梁施工周期长且连续性要求高,由于施工周 期通常较长, 且受天气、材料供应等多种因素影响, 施 工进度时常受到阻碍, 甚至出现间断式停歇, 但是道路 桥梁施工对于城市的经济社会发展具有重要意义,它不 仅推动城市基础设施的完善,还为城市的长期发展奠定 坚实基础。第四,道路桥梁工程的组织协作极为复杂, 它涉及多个专业领域,包括土木工程、工程地质、工程 力学等,需要各领域紧密协作。在实际施工中,这种跨 领域的特性导致施工队伍多样化,各领域工作交织进 行,极易出现问题,所以各领域专业人员的责任心和专 业性显得尤为重要,只有精诚团结的团队才能确保项目 的顺利推进,保障道路桥梁施工的质量和安全[1]。

2 道路桥梁施工中常见的质量问题

2.1 路基路面问题

路基沉降的发生往往源于多个因素的综合作用,路 基压实度不足是导致沉降的重要原因之一, 若压实作业 未能达到设计要求的标准, 路基在承受车辆荷载时便会 逐渐下沉,进而影响整个道路结构的稳定性;而填料质 量不佳,如含有过多的杂质、有机质等,也会直接削弱 路基的承载能力,增加沉降的风险;地基处理不当同样 不容忽视,特别是软土地基,如果未进行有效处理,极 易导致路基在后期出现不均匀沉降,给道路安全带来隐 患。路面裂缝也是道路桥梁路面的常见病害,其表现形 式多样,包括横向裂缝、纵向裂缝和网状裂缝等。横向 裂缝通常与温度变化、基层反射裂缝等因素密切相关, 在昼夜温差较大的地区,路面材料因热胀冷缩而产生的 应力变化往往导致横向裂缝的产生;纵向裂缝则可能是 由于路基不均匀沉降、路面施工接缝处理不当等原因造 成的, 当路基发生不均匀沉降时, 路面材料在应力作用 下产生撕裂,从而形成纵向裂缝;而网状裂缝的成因更 为复杂,往往与路面基层强度不足、沥青老化等多种因 素交织在一起,路面基层强度不足会导致路面在承受荷 载时产生过大的变形,沥青老化则会使路面材料变得脆 弱,易于开裂,这些裂缝不仅破坏了道路的美观性,更 降低了路面的使用性能,加速了道路的老化过程,从而 缩短了道路的使用寿命。

2.2 桥梁结构问题

桥梁基础作为整个桥梁结构的支撑核心,其质量是保障桥梁稳定与安全的基础,但是常见的桥梁基础问题如基础下沉和基础滑移却频繁出现。基础下沉多因地基承载力不足所致,若施工前未对地基进行详尽的地质勘探与承载力评估,或基础施工质量控制不严格,地基便可能无法承受桥梁荷载,从而引发下沉现象。而基础滑移则可能由于基础与地基间的摩擦力不足,特别是在水

流冲刷或地质条件复杂的情况下,基础极易发生滑动,这对桥梁的安全构成了严重威胁。桥梁上部结构问题也同样突出,梁、板等构件的质量缺陷尤为常见,混凝土裂缝和钢筋锈蚀是两大主要问题,混凝土裂缝的产生原因复杂多样,可能是混凝土配合比不当导致内部应力分布不均,也可能是养护不到位使混凝土在硬化过程中因失水而产生干缩裂缝,此外,昼夜温差大导致的热胀冷缩也是引发裂缝的重要因素。而钢筋锈蚀则多因混凝土保护层厚度不足,使钢筋直接暴露于潮湿环境中,从而发生电化学腐蚀,降低钢筋的强度和延性,严重影响桥梁结构的承载能力[2]。这些问题不仅损害了桥梁的美观性,更对桥梁的安全性和耐久性造成了严重威胁,若不及时处理,会导致桥梁结构失效,甚至引发安全事故。

2.3 附属设施问题

伸缩缝与护栏作为道路桥梁的重要附属设施, 其性 能与质量直接关系到桥梁的使用性能与道路交通安全。 伸缩缝承担着调节桥梁因温度变化、混凝土收缩等因 素引起的伸缩变形的重要任务, 但在实际使用过程中, 却常常出现损坏、漏水等问题。伸缩缝损坏多源于安装 质量不佳, 若安装时未严格遵循规范操作, 或对伸缩缝 的材质、尺寸选择不当,都可能导致其在承受车辆荷载 反复作用时发生破损;而伸缩缝漏水则更为隐蔽且危害 深远, 它不仅会侵蚀桥梁结构, 影响桥梁的耐久性, 还 可能对行车安全构成威胁, 如造成路面湿滑、结冰等状 况。护栏作为保障道路交通安全的关键设施,其质量问 题同样不容忽视。护栏的主要功能是防止车辆越界、减 轻碰撞伤害,但是当护栏出现强度不足、安装不牢固等 问题时,其防护作用将大打折扣。护栏强度不足可能是 由于使用了劣质钢材或防腐处理不到位,导致其在承受 车辆碰撞时易发生变形或断裂;设计不合理,也会影响 其防护效果。而护栏安装不牢固则可能是由于安装过程 中未严格遵循规范操作,导致护栏在车辆碰撞时无法稳 固发挥作用, 甚至可能因松动或脱落而加剧事故后果。

2.4 施工管理问题

一是施工人员素质问题,部分施工人员专业素质较低,缺乏必要的施工技能和质量控制意识。他们往往不能严格按照施工规范进行操作,导致施工质量难以保证,在混凝土浇筑过程中,若施工人员操作不当,就可能出现蜂窝、麻面等质量问题,严重影响桥梁结构的强度和耐久性。二是施工材料和设备的质量也是影响道路桥梁施工质量的重要因素。一些施工单位为了降低成本,不惜使用质量不合格的材料和设备,这些材料和设备在性能上往往无法达到设计要求,给工程质量埋下了

隐患。三是施工质量控制体系不完善,部分施工单位缺乏有效的质量监督和检查机制,对施工过程中的质量问题不能及时发现和处理。这导致问题逐渐积累,最终影响工程质量。在桥梁基础施工中,若对地基处理不当或基础施工质量控制不严,就可能导致基础下沉或滑移等严重问题,而这些问题若能在施工过程中及时发现并处理,就能避免对工程质量造成更大影响。

3 解决道路桥梁施工质量问题的措施

3.1 加强路基路面施工质量控制

在路基施工过程中,确保路基压实度是首要且关键 的任务,这要求施工人员必须严格按照设计要求进行压 实作业, 从压实设备的精心选型到压实工艺的准确确 定,每一个环节都需做到精准把控,以切实保障路基压 实度达到规定标准。压实设备的选择应充分考量路基的 土质、湿度以及压实度要求, 合理选用如振动压路机、 静力压路机等设备,并严格控制压实速度、遍数等关键 参数,从而确保压实效果达到最佳。对路基填料的质量 控制同样不容忽视,必须严格选用符合要求的填料,坚 决避免使用不合格材料,填料应具备良好的级配、较低 的含水量以及较高的强度,确保路基的稳定性和耐久 性。预防路面裂缝也是路基路面施工质量控制中至关重 要的一环,路面裂缝不仅严重影响道路的美观性,更会 显著降低路面的使用性能,缩短道路的使用寿命。所以 要针对不同类型的路面裂缝,采取切实有效的预防措 施,如对于因温度变化引起的横向裂缝,可通过合理设 置伸缩缝、改善路面结构等方式来减少裂缝的产生;对 于基层反射裂缝,关键在于加强基层施工质量控制,选 用合适的基层材料,提高基层的平整度和强度,以减少 裂缝的反射; 而对于网状裂缝, 则需着力提高路面基层 强度,加强沥青混合料的配合比设计和施工质量控制, 通过优化配合比、提高沥青与集料的黏附性来增强路面 的抗裂性能,并严格控制施工温度、压实度等参数,确 保路面施工质量[3]。

3.2 强化桥梁结构施工质量管理

在基础施工过程中,实施全方位、全过程的质量控制至关重要,从钢筋的精细绑扎、模板的稳固安装到混凝土的规范浇筑,每一个环节都需严格把关,确保基础的强度和稳定性完全达到设计要求。对基础周边环境的持续监测也不容忽视,特别是要密切关注水流冲刷、地质变动等潜在风险因素对基础可能造成的破坏,一旦发现异常,必须立即采取相应措施,确保基础安全无虞。提高桥梁上部结构施工质量同样至关重要,其中混凝土的配合比设计与浇筑质量是核心环节,要根据工程实际

需求,科学设计混凝土的配合比,确保混凝土具备良好的工作性能与力学性能。在浇筑过程中,严格控制浇筑速度、高度与振捣质量,有效避免蜂窝、麻面等质量问题,并且混凝土的养护工作也要足够重视,通过覆盖保湿、喷水养护等适当措施,有效防止混凝土裂缝的产生。另外,钢筋的保护层厚度控制也是关键所在,必须确保钢筋的保护层厚度符合设计要求,防止钢筋因暴露于外界环境而发生锈蚀,所以在施工过程中要采取有效的防锈措施,全面延长桥梁的使用寿命,确保桥梁结构的安全与稳定。

3.3 完善附属设施施工

为确保道路桥梁附属设施施工质量,提升桥梁整体 性能与安全性,伸缩缝与护栏的施工质量控制至关重 要。在伸缩缝施工方面,安装前需进行严格的检查和验 收,从材质、尺寸到性能,每一项指标都必须符合相关 标准和设计要求,以杜绝任何质量隐患。安装过程中, 施工人员必须严格遵循施工规范, 无论是伸缩缝的定 位、固定还是密封处理,每一个步骤都要精准无误,确 保伸缩缝的安装质量达到最优水平。伸缩缝的日常维护 和管理也不容忽视, 应定期清理伸缩缝内的杂物, 防止 因杂物堆积导致的伸缩缝损坏和漏水问题, 从而有效延 长伸缩缝的使用寿命,保障桥梁的伸缩变形能力。在护 栏施工方面,作为保障道路交通安全的重要设施,其强 度和安装牢固性直接关系到行人与车辆的安全。所以必 须选用质量合格、性能稳定的产品,并在安装过程中严 格按照设计要求进行操作, 从护栏的高度、间距到安装 角度,每一项参数都要精确控制,确保护栏安装牢固可 靠。加强对护栏的质量检测也是必不可少的环节,通过 定期的检查和测试,及时发现并处理不合格的护栏,防 止其因质量问题而引发的安全事故,对于检测中发现的 不合格护栏,应立即进行更换,以确保桥梁护栏的整体 质量符合安全标准。

3.4 加强施工管理

施工人员作为工程建设的直接执行者,其专业素质 和质量控制意识的高低直接影响工程质量,因此提高施 工人员素质是施工管理的核心环节,必须加强对他们的 培训和教育, 定期组织技能培训和考核, 通过系统学习 与实践使其掌握先进施工技术和质量控制方法,不断提 升专业素养与业务能力,同时注重培养其质量责任感和 敬业精神,让其充分认识到工程质量的重要性,自觉遵 守施工规范和质量标准,确保每项工程都能达到设计要 求。而材料和设备作为工程建设的物质基础,其质量好 坏直接关系到工程的耐久性和安全性, 所以严格把控施 工材料和设备质量是施工管理的关键环节,需建立严格 的采购、检验制度,对进入施工现场的材料和设备进行 严格质量检验, 采购时选择信誉良好、质量可靠的供应 商并签订质量保证协议,检验时严格按照相关标准和规 范进行,对不合格材料和设备坚决退场处理,此外还要 加强对材料和设备的储存与管理, 防止其因受潮、腐蚀 等原因损坏和变质[4]。完善施工质量控制体系则是施工管 理的保障环节,建立健全该体系并加强对施工过程的监 督和检查,是确保工程质量的重要手段,应制定详细的 质量控制计划和措施,明确各部门和人员的质量职责, 形成全员参与、全过程控制的质量管理格局,同时定期 对施工质量进行检查和评估, 对发现的质量问题及时整 改,确保工程质量始终处于可控状态。

结语

综上所述, 道路桥梁施工是一个涉及多方面因素的 复杂过程, 提高施工质量不仅需要关注技术层面的改 进, 还需要加强施工管理, 提升人员素质, 并完善质量 控制体系。通过这些综合性措施的实施, 可以有效预防 和解决道路桥梁施工中的质量问题, 为城市的可持续发 展提供坚实的基础设施保障。

参考文献

- [1]陈明阳.探讨道路桥梁施工技术管理及道路桥梁养护措施[J].现代交通与路桥建设,2025,4(4):10.
- [2]王浩存,宋志明.道路桥梁施工裂缝原因分析[J].现代交通与路桥建设,2025,4(2):81-82.
- [3]高帆,张涛.道路桥隧工程施工难点及改进措施研究 [J].越野世界,2025,20(6):152-154.
- [4]金鉴.道路桥梁施工质量问题探析[J].工程施工与管理,2024,2(11):36.