平原大规模风电场折减系数分析

张云超 蔡创彬 逢增强 华润电力技术研究院有限公司 广东 深圳 518002

摘 要:折减系数是影响风电场评估的准确性的重要因素之一,目前行业内对于平原风电,特别是平原大规模风电场研究分析较少,本文通过对某平原大规模风电场的分析发现,整个风电场的折减系数呈现离散分布,分布较广。测风塔代表性及与实际机位距离呈现较好的相关性。地表粗糙度,特别是大型人类生活的聚集地,对风电场实际发电量影响效果显著。

关键词: 测风塔代表性; 发电量; 折减系数; 风电场; 相关性

引言

近些年风电装机规模迅猛发展,截止2020年10月,全国风电装机容量约3亿千瓦,伴随着低风速机型迭代更新,中东部地区低风速风电场规模增长迅速,风电场随着容量的增加,对项目度电成本降低效果显著,一些容量较大的风电场应运而生。

在风资源评估过程中,通常通过利用测风塔的风频,采用各种评估发电量软件计算得出的尾流后发电量乘以折减系数,得出各位机位及全场发电量,折减系数的选取决定项目发电量计算的准确性,特别是在低风速风电场,直接决定项目的投资成败。

李小兵^[1]等在《我国风能资源评估的主要问题及原因分析》中对特殊气候风电场的表现进行研究分析。杨靖文^[2]等在《风电场发电量折减精细化评估研究》中分析了全国典型气候环境已运行风电场的发电量折减误差的原因。从上述文献中看出,目前对复杂山地、特殊条件折减系数的研究较多,对平原风电场,特别是平原大规模风电场研究相对较少,本文对某平原大规模风电场进行分析,为今后此类项目的开发建设提供参考。

1 工程概况

1.1 项目情况简介

项目位于河南某地平原地区,项目于场址范围内地 形平坦,海拔起伏较小,区域海拔高度介于50~60m,为 典型的平原风电场。东西长约30km,南北长约20km,项 目共200台风机,总容量400MW。

1.2 项目地形及风机排布情况

项目机位以某风机厂家115-2.1MW(122台,轮毂高度100米)、121-2.0MW(57台,轮毂高度100米)机型为主,且两种机型完成功率曲线测试,本文主要针对这两种机型进行分析。

项目机位排布充分考虑机位对居民、养殖场的影响

以及压矿、保护区、水源地等它限制性因素,尽量成排布置,垂直于主风向保证3D,平行主风向拉开风机间距,降低尾流的不确定度。

2 资料分析

2.1 测风塔代表性

项目前期规划阶段在项目东北、西部、中部及南部 均设有测风塔,测风塔在水平空间分布具有一定的代表 性,基本覆盖风电场范围。5座测风塔均为100米,等于 风机轮毂高度,在垂直空间分布代表性较好。

2.2 测风塔风速

测风塔数据质量好,有效数据完整率高于90%,缺测数据建立临近测风塔的风速相关关系,对测风塔进行插补。为避免不同时间段订正带来的误差,本次选用5座测风塔选取同一测风时间段(2016.6.1-2017.5.31)作为代表年。

编号 选取时间段 高度 (m) 完整率 M1 2016.6.1-2017.5.31 100 99.85% M2 2016.6.1-2017.5.31 100 99.65% M3 2016.6.1-2017.5.31 100 99.97% M4 2016.6.1-2017.5.31 100 100% M5 2016.6.1-2017.5.31 100 99.99%

表1 测风塔信息

2.3 测风塔风向

5座测风塔实测数据分析结果,主风向及主风能略有偏移,项目范围内风向、主风能基本一致,主要为N、NNE及S、SSW,风向及风能较为集中。

2.4 发电量计算过程

本项目2019年6月全部并网,本次取得风电场2020年 实际发电数据,并于2021年对115-2.1MW、121-2.0MW两 款机型完成功率曲线测试。

本项目使用与项目测风数据相关性较好的ERA5

数据,分析结果显示2020.1.1-2020.12.31较2016.6.1-2017.5.31偏低2.9%,对数据进行向下订正,将代表年数据订正到2020年风速水平。选取2种机型测试功率曲线,使用业内广泛使用的商业评估软件Meteodyn WT进行风资源分析,粗糙度为软件自带粗糙度,评估风电场2020年发电量,该发电量特指软件计算的尾流后发电量。

折减系数指各机位实际发电量和软件计算各机位尾 流后的发电量之间的比值。

$$R = \frac{W_{mcp.A}}{W_{mcp.T}}$$

式中: R为折减系数; $W_{mep.A}$ 为风电场实际年发电量; $W_{mep.T}$ 为软件模拟尾流后年发电量。

3 分析过程

3.1 风电场折减分布

整个风电场179台机位,从结果显示折减系数呈现离散状态分布,从0.7~0.9不等,其中折减系数0.7-0.75的机位占比23%,折减系数0.75-0.8的机位占比23%,折减系数0.8-0.85的机位占比33%,折减系数0.85-0.9的机位占比21%。折减系数在0.8-0.85占最多。全场平均折减系数为0.8118。

取全场平均折减系数对所有机位尾流后的发电量进行折减,并与实际发电量进行对比,最大偏差-11.69%和13.51%,实际小时数差值最大-260h和216h。目前行业内普遍采用的一个折减系数无法达到精细化评估的目的。

从折减系数的空间分布看,大规模平原风电并非全场发电量较为平均、差别不大的情况。首先全场测风塔同期测风呈现最大0.2m/s的风速差异,其次全场范围内村庄密布,各区域内下垫层受影响不同,表现出不规则的区域分布特点,区域内差异较小,区域间差异较大。

综合分析平原风电的特点,测风塔的代表性、机位 周边的粗糙度(城镇、城市等)均会对风机实际发电产 生较大影响。

3.2 影响分析

3.2.1 测风塔代表性的影响

表2 偏差百分比

机位编号	发电量偏差(%)	机位与M4的距离(km)
F192	0.8304	14.80
F191	0.8264	13.94
F131	0.8178	12.08
F190	0.8406	11.52
F189	0.8288	10.90
F188	0.8266	10.28
F187	0.8341	9.58
F186	0.8380	9.01

续表:

机位编号	发电量偏差(%)	机位与M4的距离(km)
F185	0.8435	8.37
F184	0.8561	7.88
F183	0.8769	7.28
F181	0.8622	6.27
F180	0.8780	5.76
F177	0.8737	3.93
F176	0.8781	3.46
F175	0.8655	3.09
F174	0.8616	2.65
F173	0.8887	2.19
F172	0.8773	1.66
F171	0.8896	0.95
F170	0.8940	0.06

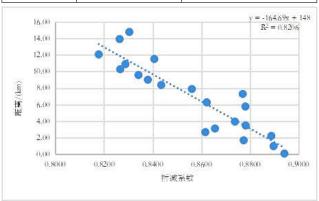


图1 与测风塔的距离和折减系数相关性

通过对比测风塔代表性和折减系数的关系,测风塔的代表性和距离呈现较好的相关性,距离测风塔越近,代表性越好,相应的折减系数越高^[3-4]。

3.2.2 城镇对折减的影响

图2 区域地理位置

为分析城镇对发电量影响,选取场址内环境条件基本一致,主要影响因素为城镇的4台风机进行对比。城镇呈现南北最长1km,东西最长1km的多边形。结果显示距离居城镇越远,折减系数越大,受城镇的影响越小。

3.2.3 城市对折减的影响

图4 区域地理位置

场址东南侧为某市市区,南北最长约14km,东南最长约21km,从整个场区对比,市区附近机位折减系数低于场区均值,分布在0.7-0.75之间,虽然市区的地理位置未完全位于机位主风向上,但市区影响范围较广。

4 结论

通过对该大规模平原风电场分析,折减系数呈现离散状态分布,分布不均,分布范围较广。平原风电场,特别是大规模平原风电场并非呈现普遍意识上的发电量较为平均、相差不大的情况,通过本次对折减系数分析,测风塔的代表性对于精确评估风电场发电量至关重要。平原风电场下垫层的影响对风机实际发电量影响较大,通过对缩小区域范围的分析,呈现出一定的变化规律。

参考文献

[1]李小兵,王潇.我国风能资源评估的主要问题及原因分析[J].风能,2019(01):54-60.

[2]杨靖文,张双益.风电场发电量折减精细化评估研究 [J].水电与新能源,2019,33(10):69-73.

[3]王道欣,蔡创彬,王金鹤.基于发电量的测风塔代表性影响因素定量分析[J].华电技术,2020,42(12):72-77.

[4]风电场工程风能资源测量与评估技术规范: NBT31147-2018 [S]