水利工程BIM应用探索与实践

秦朝辉

河北省水利工程局集团有限公司第五分公司 河北 石家庄 050011

摘要:本文深入探讨了水利工程BIM应用探索与实践。阐述了BIM技术的特点,包括可视化、协同性等。分析了其在水利工程各阶段的应用现状,如规划设计、施工及运营维护阶段。详细介绍了水利工程BIM技术在前期咨询、设计和项目建设实施阶段的应用实践。并通过具体案例展示了BIM在水利工程中的实际成效。

关键词:水利工程;BIM技术;应用探索;实践

引言:随着信息技术的不断发展,BIM技术在工程建设领域的应用日益广泛。水利工程作为关乎国计民生的重要基础设施,具有投资规模大、建设周期长等特点。传统水利工程建设方式存在诸多问题,如信息沟通不畅、协同工作困难等。而BIM技术为水利工程带来了新的机遇,能够实现全生命周期的信息集成与共享。

1 BIM 技术的特点

(1) 可视化: BIM技术最显著的特点之一就是可视 化。它将抽象的二维图纸转化为生动逼真的三维模型, 使人们能够如同身临其境般地观察工程的每一个细节。 无论是建筑物的外观、内部结构,还是水利工程中的河 道、大坝等,都可以通过BIM模型清晰地展现出来,大大 提高了沟通效率和设计质量。(2)协同性:在工程项目 中,涉及多个专业和部门,协同工作至关重要。BIM技术 为各参与方提供了一个协同工作的平台,大家可以在同 一模型上实时共享信息、交流意见,及时解决设计和施 工中的问题,避免了信息孤岛和重复劳动。(3)信息集 成性: BIM模型不仅仅是一个几何模型, 更是一个包含了 丰富信息的数据库。它集成了工程的设计参数、材料属 性、施工进度等各种信息,为项目的全生命周期管理提 供了强大的数据支持。(4)模拟性: BIM技术可以对工 程的施工过程、运营状态等进行模拟。例如,可以模拟 施工顺序、预测施工进度、分析结构性能等,帮助项目 团队提前发现问题、优化方案,降低工程风险。(5)可 优化性:基于BIM模型的信息集成和模拟分析功能,设计 人员和施工人员可以对工程方案进行不断优化。通过调 整参数、改变设计策略等方式,提高工程的质量、效率 和可持续性。

2 BIM 在水利工程中的应用现状

2.1 规划设计阶段

在水利工程规划设计阶段,BIM技术的可视化功能 发挥了重要作用。通过建立三维模型,设计人员可以更 加直观地展示工程的布局和结构,以及与周边环境的关系。这有助于提高规划的科学性和合理性,同时也方便了与业主、施工单位等各方的沟通交流。此外,BIM技术还可以进行多方案比选,快速评估不同设计方案的优缺点,为最终决策提供有力支持。例如,在水库工程的规划设计中,利用BIM模型可以清晰地展示大坝、溢洪道、输水隧洞等建筑物的位置和尺寸,以及水库的淹没范围和对周边环境的影响,从而帮助设计人员优化设计方案。

2.2 施工阶段

在水利工程施工阶段,BIM技术为施工管理带来了诸多便利。首先,通过将BIM模型与施工进度计划相结合,可以实现施工进度的可视化管理。施工人员可以直观地了解工程的施工进度和各工序的时间节点,合理安排施工资源,提高施工效率。其次,利用BIM技术进行施工模拟,可以提前发现施工过程中可能出现的问题和风险,如施工碰撞、空间不足等,及时调整施工方案,避免施工延误和成本增加[1]。此外,BIM模型中的信息可以为施工质量控制提供依据。施工人员可以根据模型中的材料规格、施工工艺等信息进行施工,确保施工质量符合要求。

2.3 运营维护阶段

虽然BIM在水利工程运营维护阶段的应用还处于起步阶段,但已经展现出了巨大的潜力。通过将BIM模型与物联网技术相结合,可以实现对水利工程设施的实时监测和管理。例如,对大坝的变形、渗流等进行监测,及时发现安全隐患,采取相应的维护措施。此外,利用BIM模型可以快速查询和定位工程设施的位置和属性信息,为维修和保养提供便利。例如,在泵站的运营维护中,利用BIM模型可以快速查询泵站设备的型号、参数等信息,提高了维修效率。

3 水利工程 BIM 技术的应用实践

3.1 前期咨询阶段

传统水利工程前期咨询往往面临诸多问题。由于各部门职责不同,对工程的理解程度存在差异,导致对工程建设在各自职权范围内的影响了解不足。例如,环保部门可能主要关注工程对生态环境的影响,交通部门则关心工程对周边道路和交通的影响,而水利部门则侧重于工程的水利功能实现。传统的二维彩色平面图在传达工程信息方面具有局限性,难以让各部门充分理解工程的全貌和细节。这使得沟通难度大、耗时长,严重影响了前期咨询的效率和质量。

而BIM技术的引入为解决这些问题提供了有效途径。 利用Infraworks软件构建环境模型,可以将水利工程周边 的道路、桥梁、建筑、河流等用三维模型表达出来。这 种三维模型直观地呈现在各个部门眼前,使他们能够更 加清晰地了解工程与周边环境的关系。例如,交通部门 可以通过三维模型直观地看到水利工程建设对周边道路 的影响,从而提前规划交通疏导方案;环保部门可以评 估工程对生态环境的影响,并提出相应的环保措施。

3.2 设计阶段

传统的二维图纸设计方式在水利工程设计中存在明 显的局限性。二维图纸难以全面、准确地展现水利工程 的复杂结构和空间关系,难以满足全程化管理的需求。 相比之下, BIM技术具有显著的优势。首先, 它可以展现 水利工程的三维空间模型, 使设计人员能够更加直观地 观察和理解工程的结构和空间关系。这不仅有助于提高 设计的准确性和合理性,还为全程化管理提供了基础。 在工程的建设过程中,施工人员可以通过三维模型更好 地理解设计意图,提高施工质量和效率。其次,BIM技术 能够精确建立和完善三维空间模型。通过精确的测量和 建模,可以将水利工程的各个部分以高精度的三维模型 呈现出来,为施工与管理奠定坚实的基础。在施工过程 中,施工人员可以根据三维模型进行精确的施工定位和 测量,确保施工质量和精度。BIM技术也可以取代传统的 二维图纸绘制。在需要二维图纸的情况下, BIM软件可以 实时生成所需断面的二维图纸, 大大提高了图纸的生成 效率。而且, BIM技术可以重点深度细化关键节点的图 纸, 使关键节点的设计更加清晰、准确。这有助于在施 工前期核查设计图纸,及时发现错误,提高设计人员的 工作效率。

3.3 项目建设实施阶段

BIM技术在项目建设实施阶段发挥着重要作用。借助 BIM技术的优势,可以对施工过程进行实时监控和管理。 通过在施工现场安装传感器和监控设备,并将其与BIM模 型进行连接,可以实时获取施工过程中的各种数据,如 施工进度、质量状况、安全风险等。管理人员可以通过BIM模型直观地了解施工过程中的情况,及时发现和解决质量问题。BIM技术也可以优化施工方案^[2]。通过对BIM模型进行施工模拟和优化,可以提前发现施工过程中可能出现的问题和风险,并制定相应的解决方案。例如,在隧道施工中,可以通过BIM技术进行施工模拟,优化隧道的开挖顺序和支护方案,提高施工效率,降低施工风险。BIM技术还可以提高施工效率,降低施工成本。通过精确的三维模型和施工模拟,可以合理安排施工资源,优化施工流程,减少施工中的浪费和重复工作,从而提高施工效率,降低施工成本。

4 水利工程 BIM 应用实践案例

以下以引江济淮工程为例进行分析:

4.1 工程概况

- (1)基本信息:引江济淮工程是安徽省基础设施建设"一号工程",沟通长江、淮河两大水系,具有保障供水、发展航运、改善水环境等重要作用。
- (2)独特构造: 江淮沟通段为II级航道,需穿越长江、淮河分水岭,下穿既有淠河总干渠。淠河总干渠渡槽位于合肥市肥西县境内,是"地河"引江济淮工程和"天河"淠河总干渠两大水利基础设施的立体交叉建筑物,被誉为河上有河、船上有船的"水立交""船立交"。该渡槽为世界最大跨度通航钢结构渡槽水桥、世界首座波折钢腹板渡槽水桥、国内首座钢结构渡槽水桥。桥梁采用三跨桁架式,上开下合、上桁下拱的全焊接桁架式梁拱组合体系,跨径布置为68m+110m+68m,U形水槽侧壁采用不锈钢复合波折板,全宽58.0m,总用钢量2.1万吨。

4.2 应用BIM技术的背景和目标

- (1)背景:建筑业传统建造模式已不符合可持续发展需要,随着"数字中国""中国建造"等概念提出,建筑业企业对数字化发展越发重视,BIM技术作为数据载体,能实现建筑全生命期管理,是建筑业发展的必然趋势^[3]。引江济淮工程面临水荷载集度大、变幅大、活恒载比重大、全焊接结构节点构造复杂、加工精度要求高等挑战,需要自动化、数字化、智能化的建造技术以及信息化、数字化的施工管理技术。
- (2)目标: 预先在计算机中模拟建立数字化信息模型,寻找实施方案最优解,提高工程质量、施工管理水平,精确统计工程量,合理规划施工进度,实现从设计到建造再到运维的基于数据驱动的全生命期管理。

4.3 BIM技术应用过程

4.3.1 前期规划

- (1)场地分析:在项目前期采用无人机对现场区域进行航线规划,利用倾斜摄影技术处理数据生成实景建模,可直接进行距离测量、面积计算、体积计算等操作,并将原始地形模型与设计地形模型进行对比分析,得出场地的填方和挖方量。还能将实景模型与BIM模型整合,用于施工调查、场地规划、辅助拆迁等方面。
- (2)方案比选:建立临时加工厂规划模型,进行多方案对比,如临时加工厂最初位于河渠之内,后优化移至河渠之外的场地,最终因场地长度不足又改为垂直于河道布置,通过BIM技术确定了最合理的方案。

4.3.2 设计阶段

- (1)三维模型的建立:依据设计图纸搭建BIM模型,过程中考虑加工制造工艺,及时与设计沟通确认。建模时即可对设计图纸进行错漏碰缺检查,提高了图纸会审的效率。基于BIM模型可输出深化设计图纸,图纸中的几何尺寸信息与模型一致,且零件编号、材质、数量、重量等信息均通过BIM模型自动生成。
- (2)碰撞检查:在设计过程中,通过BIM模型能够及时发现各专业之间的碰撞冲突,如构件之间的空间位置冲突等问题,减少施工阶段的变更和返工。
- (3) 优化设计:根据碰撞检查的结果以及对施工过程的模拟分析,对设计进行优化。例如,针对杆件高空对接数量大、焊接质量及整体线形控制等重点难点问题,通过BIM技术进行优化设计,提高施工的可行性和质量。

4.3.3 施工阶段

- (1)施工模拟:利用BIM模型进行施工方案模拟,如确定现场四个拼装区域分两个班组同步对称试拼装,单个班组的两个桁片对称成槽,分两轮从渡槽两端向跨中方向依次试拼装;通过模拟确定合理的吊装顺序,解决超大构件的吊装就位难题。
- (2)进度控制:基于BIM模型可以精确统计工程量和制定施工计划,实时跟踪施工进度,对比实际进度与计划进度,及时调整施工安排,确保工程按时完成。
- (3)质量监控:研发BIM智慧管理平台,实现设计资料与模型的协同管理,对施工过程中的质量进行实时监控,如对构件的焊接质量、安装精度等进行监控,及时发现并处理质量问题。

4.3.4 运维阶段

(1)设施管理:将BIM模型与运维管理系统相结合,对渡槽的设施进行全面管理,包括设备的维护、保养、

更换等。管理人员可以通过BIM模型快速获取设施的相关信息,制定合理的运维计划。

(2)应急管理:在发生突发事件时,BIM模型可以提供准确的工程信息,帮助应急救援人员快速了解渡槽的结构和周边环境,制定科学的应急救援方案,提高应急管理的效率。

4.4 应用效果评估

4.4.1 经济效益

- (1)成本节约:通过BIM模型的深化设计和碰撞检查,减少了设计变更和施工中的返工,降低了材料浪费和人工成本。例如,SmartNest排版比传统人工排版料损减少2.1%,排版效率提高3倍。
- (2)效益提升:提高了施工效率,缩短了工期,使得项目能够更早地投入使用,带来了经济效益的提升。同时基于BIM技术的信息化管理系统提高了管理效率,降低了管理成本。

4.4.2 社会效益

- (1)对周边环境的积极影响:引江济淮工程的建设改善了周边地区的水环境,提高了水资源的利用效率,对生态环境的保护和修复具有积极意义。并且,工程的建设带动了周边地区的经济发展,促进了区域协调发展。
- (2)对社会发展的积极影响:作为一项重大的基础设施工程,引江济淮工程为地区的供水、航运、灌溉等提供了重要保障,提高了人民的生活质量,对社会的稳定和发展具有重要的支撑作用。

结语:本文通过对其特点、应用现状、应用实践及案例的分析,我们看到BIM技术在提高水利工程规划设计的科学性、施工管理的效率以及运营维护的便捷性等方面发挥了显著作用。然而,目前仍面临技术标准不统一、人才短缺等挑战。未来,我们应加强BIM技术的研究与推广,制定统一标准,培养专业人才,不断拓展其在水利工程领域的应用深度和广度,为水利事业的发展注入新的活力。

参考文献

- [1]陈文亮,王良,王成,衡阳.BIM技术在水利工程施工中的应用[J].水利技术监督,2021(6):43-44.
- [2]康进军.BIM技术在水利工程建设与管理中的应用探讨[J].农业开发与装备,2023,253(1):146-148.
- [3]张敬宏.水利工程中BIM技术的应用及推广[J].冶金管理,2022(23):68-70.