人工智能在水文水资源管理中的创新应用与效益分析

常英杰

新疆水利水电勘测设计研究院有限责任公司 新疆 乌鲁木齐 830000

摘 要: 随着全球水资源管理面临日益严峻的挑战,人工智能(AI)技术以其强大的数据处理能力和智能决策支持,在水文水资源管理中展现出巨大潜力。本文旨在深入探讨人工智能在水文水资源管理中的创新应用,并从管理效益、经济效益、社会效益三个维度全面分析其带来的深远影响。

关键词:人工智能;水文水资源管理;应用;效益

引言

水资源管理的复杂性要求管理者具备高效的数据处理、精准预测及快速响应能力。人工智能技术的引入,为这一领域带来了革命性的改变。它不仅提升了管理效率,还促进了水资源的可持续利用,对经济社会发展产生了积极影响。

1 人工智能在水文水资源管理中的创新应用

1.1 数据采集与处理

在水文水资源管理的广阔领域中,数据的精确采集 与高效处理是基石。人工智能,尤其是物联网(IoT) 技术与机器学习的结合, 为这一传统领域带来了前所未 有的变革。通过部署智能传感器和监测设备,物联网技 术实现了对水文水资源相关数据的实时、连续采集。这 些设备能够精准捕捉河流流量、湖泊水位、地下水储 量、水质参数(如溶解氧、浊度、PH值等)、气象条 件(降雨量、温度、湿度等)以及地理信息(地形地 貌、土壤类型等)的细微变化。数据通过无线网络实时 传输至云端服务器,形成了包含时间序列、空间分布特 征的全方位数据画像。这一过程中,边缘计算技术的应 用进一步提升了数据处理的即时性和效率,减少了对中 心服务器的依赖,降低了延迟。采集到的海量数据,如 果未经有效处理,其价值难以被充分挖掘。此时,机器 学习的强大能力得以展现。通过构建深度学习模型,如 卷积神经网络(CNN)、循环神经网络(RNN)等,系 统能够自动识别数据中的模式、趋势和异常值。这些模 型不仅能从历史数据中学习,还能随着新数据的加入而 自我优化,实现持续学习。例如,利用长短期记忆网络 (LSTM)预测河流未来流量,或采用聚类算法对水质数 据进行分类,识别污染源和污染程度[1]。此外,人工智能 还通过数据融合技术,将来自不同来源、不同格式的数 据进行整合,形成统一的数据视图,为决策者提供了全 面、准确的信息基础。这种跨领域的数据整合能力,极 大地提升了水文水资源管理的科学性和精准度,为后续 的水资源规划、调度、保护及灾害预警提供了坚实的数 据支撑。

1.2 水质监测与治理

在水质监测与治理领域,人工智能技术的应用显著 提升了监测效率与治理效果,实现了从传统手动检测到 智能监控的跨越。传统水质监测通常依赖人工采样和 实验室分析,这一过程不仅耗时耗力,还存在时间滞后 性,难以实时反映水质状况。而人工智能通过集成高精 度传感器与图像识别技术,实现了对水体质量的实时、 在线监测。智能传感器能够连续捕捉水质参数,如溶解 氧、浊度、重金属含量等,而图像识别技术则能识别水 体中的微小颗粒物、藻类爆发等异常情况,甚至通过机 器学习模型分析水色变化,判断水质状况。一旦发现水 质异常,系统能立即触发报警机制,及时向管理部门发 送预警信息,大大缩短了响应时间,为迅速采取治理措 施提供了可能。在水质治理方面,人工智能通过大数据 分析和智能算法,优化水质处理方案。例如,基于历史 水质数据和治理效果,构建预测模型,模拟不同治理策 略下的水质改善情况,从而选择最优治理方案。智能算 法还能根据实时水质监测数据, 动态调整水处理设施的 运行参数,如加药量、过滤速率等,确保处理效率最大 化,同时减少不必要的资源消耗。此外,人工智能在污 染源追踪方面也展现出巨大潜力。通过分析水质监测数 据与地理信息,结合机器学习算法,可以准确追溯污染 源位置,为精准打击违法排污行为提供科学依据。这种 从监测到治理的全链条智能化管理,不仅提高了水质 管理效率,还有效促进了水资源的保护和生态环境的 改善。

1.3 水资源优化配置与调度

在水资源优化配置与调度领域,人工智能技术的引 入为实现水资源的精准管理和高效利用提供了强大工 具。人工智能通过构建复杂的水资源供需预测模型,综 合考虑气候变化、用水需求增长、水资源储量变化等多 重因素,能够准确预测未来一段时间内的水资源供需状 况。这些模型基于历史数据和实时监测信息,运用时间 序列分析、机器学习等技术手段,不断提高预测精度, 为水资源规划提供科学依据。在资源配置方面,人工智 能利用遗传算法、粒子群算法等先进优化算法,解决水 资源分配中的复杂问题。这些算法能够探索多种可能的 分配方案,通过迭代计算,找到在满足各用户基本需求 的同时, 实现水资源利用效率最大化的最优解。例如, 在农业灌溉、工业用水、城市供水等多个领域,智能算 法能够根据不同用户的优先级、用水效率和经济效益, 动态调整水资源分配比例,确保水资源的公平、高效利 用。智能决策支持系统是水资源优化配置的另一重要工 具。它集成了数据分析、模型预测、优化算法等功能, 为决策者提供直观、易用的操作界面[2]。通过这一系统, 决策者可以快速获取水资源供需状况、优化配置方案、 调度建议等信息,并根据实际情况做出及时调整。智能 决策支持系统还能够模拟不同调度策略下的水资源分配 效果,帮助决策者评估不同方案的优劣,选择最佳调度 路径。此外,人工智能还通过实时监测和反馈机制,不 断优化水资源调度过程。通过智能传感器和监测设备, 实时收集水资源使用数据,结合预测模型和优化算法, 动态调整调度策略,确保水资源在时间和空间上的合理 分配,减少浪费,提高利用效率。

1.4 水灾害预警与防范

在水灾害预警与防范领域,人工智能技术的应用显 著提升了预警的准确性和应急响应的效率,为减少水灾 害损失提供了有力保障。基于人工智能的预警模型,如 深度神经网络(DNN)、支持向量机(SVM)等,通 过对历史灾害数据的深度学习和分析, 能够挖掘出灾害 发生的潜在规律和风险因素。这些模型综合考虑气象条 件、水文数据、地形地貌等多种因素,构建出复杂而精 确的预警系统。在模型训练过程中,算法不断优化参 数,提高对未来水灾害事件的预测能力,实现从"被动 应对"到"主动预警"的转变。当洪水、干旱等水灾害 风险上升时,人工智能系统能够迅速识别并启动应急预 案。通过实时监测气象数据、水文变化以及社交媒体上 的相关信息,系统能够快速评估灾害的潜在影响范围和 严重程度,为决策者提供及时、准确的预警信息。这些 信息不仅包括灾害发生的可能性,还包括预计的灾害强 度、影响区域、可能造成的损失等关键细节, 为应急响 应提供科学依据。在灾害防范方面,人工智能还通过模 拟和仿真技术,辅助制定和优化应急预案。通过构建灾 害模拟模型,系统能够预测不同应对措施下的灾害发展 趋势,评估各种预案的可行性和效果,从而选择最优的 防灾减灾策略。此外,人工智能还能够在灾害发生后, 通过数据分析和挖掘,快速识别受灾区域和受灾程度, 为救援物资分配、人员疏散等应急行动提供精准指导。

2 人工智能在水文水资源管理中的效益分析

2.1 管理效益

- (1)自动化与智能化提升效率:人工智能技术的引入,极大程度上实现了水文水资源管理的自动化与智能化。数据的自动采集、处理与分析过程,几乎无需人工干预,显著提高了工作效率和数据准确性。智能预警系统的应用,更是能够提前识别潜在的水灾害风险,为管理者提供即时的决策支持,有效缩短了应急响应时间,降低了灾害造成的潜在损失。
- (2)精准管理优化资源配置:通过AI算法对水资源配置与调度的优化,水文水资源管理实现了从粗放型向精细化的转变。AI技术能够精确计算不同区域、不同时段的用水需求,合理调配水资源,提高了水资源的时空分配效率,有效减少了水资源的浪费。这种精准管理方式,不仅保障了用水的可持续性,还提升了水资源的整体利用效益。
- (3)决策科学化增强政策效果: AI模型在水文水资源管理中的应用,为政策制定者提供了科学、全面的决策依据。这些模型能够综合考虑多种复杂因素,如气候变化趋势、用水需求的动态变化、生态环境保护需求等,通过深度学习和数据分析,生成精确的预测结果和优化建议。这有助于政策制定者制定出更加符合实际情况、更具前瞻性和可操作性的政策,从而增强政策实施的效果,推动水文水资源管理的持续进步。

2.2 经济效益

(1)成本节约与效率提升并进:智能化监测与管理系统的应用,显著降低了传统水质监测和水量计量的成本。相较于过去依赖人工采样和实验室分析的方式,AI技术通过实时在线监测和智能传感器,实现了数据的自动采集与处理,大大减少了人力物力的投入。同时,智能化的管理系统通过优化水资源的配置与调度,减少了因管理不善导致的水资源损失,如漏损、过度开采等问题,进一步降低了管理成本^[3]。在效率提升方面,AI技术通过精准的水资源配置,显著提高了灌溉、工业用水等领域的用水效率。例如,在农业灌溉中,AI模型能够根据土壤湿度、作物生长周期等因素,智能调整灌溉量和灌溉时间,实现节水灌溉,降低了用水成本,同时提高了农作物的产量和品质。

在工业用水方面,AI技术通过优化生产流程和水循环利用,减少了工业废水的排放,提高了水资源的重复利用率,促进了经济的绿色增长。

(2)灾害减损与保障经济安全:准确的水灾害预警系统,对于减少洪水、干旱等自然灾害带来的经济损失具有重要意义。AI模型通过实时监测和分析气象数据、水文信息,能够提前预测灾害的发生,为相关部门部署有效的防灾减灾措施提供充足的准备时间。这不仅保护了基础设施的安全,如水库、堤防、供水系统等,还减少了因灾害导致的人民生命财产损失,维护了社会的稳定和经济的持续发展。此外,水灾害预警系统的准确性提升,还有助于减少灾后重建和恢复的成本。通过提前预警和及时应对,可以最大限度地减少灾害对经济的冲击,缩短灾后恢复的时间,保障经济活动的连续性和稳定性。

2.3 社会效益

- (1)水资源可持续利用与社会发展: AI技术的应用,为水资源的合理开发与保护提供了有力支持,推动了节水型社会的构建。通过智能监测与管理, AI技术能够精确评估水资源的储量、分布和利用状况,为制定科学的水资源开发策略提供依据。这不仅有助于避免水资源的过度开发和浪费,还促进了水资源的长期可持续利用,为经济社会的可持续发展奠定了坚实基础。
- (2)公众参与教育提升节水意识:智能平台在水资源管理中的应用,极大地促进了水资源信息的实时发布和共享。通过智能平台,公众可以便捷地获取水资源状况、节水知识等信息,从而提高节水意识,形成节约用水的良好习惯。此外,智能平台还可以鼓励公众参与水资源管理,如通过举报浪费水资源行为、参与节水活动等方式,共同推动节水文化的形成,营造全社会共同参与水资源管理的良好氛围。
- (3)环境保护与生态平衡:优化水资源管理,不仅有助于减少水资源的浪费,还能有效减少对自然水体的污染。AI技术通过智能调度和精准管理,能够最大限度地减少污水排放和不当用水行为,从而保护水生生态系

统,促进生态平衡^[4]。这不仅有助于提升居民的生活质量,还为生物多样性的保护提供了有力支持,推动了人与自然的和谐共生。

(4)社会公平与和谐:在水资源稀缺地区,AI技术的智能调度功能能够确保所有社群的基本用水需求得到满足。通过精确计算和分析,AI模型能够制定出公平、合理的水资源分配方案,避免因水资源分配不均而引发的社会矛盾。这种公平分配的方式,不仅保障了每个人的基本生活需求,还促进了社会的和谐与稳定,为构建和谐社会提供了重要支撑。

结语

人工智能在水文水资源管理中的创新应用,不仅极 大地提升了管理效益,实现了水资源的优化配置与高效 利用,而且带来了显著的经济效益,降低了管理成本, 促进了经济社会的可持续发展。更重要的是,它促进了 水资源的公平分配与环境保护,增强了社会整体的节水 意识,对构建和谐社会、实现生态文明建设具有深远的 意义。未来,随着技术的不断进步,人工智能在水文水 资源管理中的应用前景将更加广阔。

参考文献

[1]陈鸿俊.人工智能技术在水利管理中的应用[J].中国高新科技,2023,(13):63-65.

[2]孙亮,王瑞国,袁瑞,等.人工智能技术在智慧水利中的应用与展望[J].中国水利,2024,(03):44-51.

[3]王光,张瑞峰.人工智能技术在水文水资源管理的应用研究[C]//河海大学,江苏省水利学会,浙江省水利学会,上海市水利学会.2024(第十二届)中国水利信息化技术论坛论文集.黄河水利委员会宁蒙水文水资源局;,2024:5.

[4]赵韦琛,介立杰.水文水资源管理的信息化与智能化发展趋势分析[C]//上海市水利学会,江苏省水利学会,浙江省水利学会,安徽省水利学会,江西省水利学会.第二届长三角水论坛暨水利先进技术(产品)展示会论文集.黄河水利委员会黄河水文勘察测绘局;黄河水利委员会水文局;,2024:4.