汽轮机本体常见故障检修

范清华

内蒙古蒙泰不连沟煤业有限责任公司煤矸石热电厂 内蒙古 鄂尔多斯 017000

摘 要:汽轮机作为重要的动力设备,其本体的正常运行至关重要。本文围绕汽轮机本体展开,首先介绍了其结构和工作原理,包括主要组成部分如转子、静子等以及蒸汽推动转子旋转产生动力的原理。接着深入分析了常见故障类型,像震动、叶片、轴承、汽缸故障等,剖析了各自产生的原因。阐述了故障检修方法与技术,涵盖诊断技术、检修工艺和工具设备。最后提出了故障预防措施和维护策略,旨在保障汽轮机本体高效、稳定运行,为相关检修和维护工作提供全面指导。

关键词: 汽轮机; 本体常见; 故障检修

引言:在现代工业领域,汽轮机扮演着极为关键的角色,广泛应用于发电、航运等众多行业。汽轮机本体的良好运行状态直接关系到整个系统的稳定与效率。然而,在实际运行过程中,汽轮机本体容易出现各种故障,如震动、叶片损坏、轴承磨损、汽缸异常等。这些故障不仅会影响汽轮机的正常工作,甚至可能导致严重的安全事故和巨大的经济损失。因此,深入研究汽轮机本体常见故障的检修具有重要的现实意义,本文将对此进行详细探讨。

1 汽轮机本体结构和工作原理

1.1 汽轮机本体的主要组成部分

1.1.1 转动部分

主要包括主轴、叶轮、叶片等。主轴是整个转动部件的核心支撑,承担着传递扭矩的重要作用。叶轮安装在主轴上,为叶片提供固定的安装位置。叶片是将蒸汽的动能转换为机械能的关键部件,其形状和设计根据汽轮机的类型和应用场景精心打造,具有良好的空气动力学性能,以确保高效地接受蒸汽的冲击力或反作用力。

1.1.2 静止部分

这部分包含汽缸、喷嘴、隔板等。汽缸为汽轮机内部部件提供一个封闭的工作空间,承受着蒸汽的压力和温度。喷嘴的作用是将蒸汽的热能转化为动能,使蒸汽以高速喷射向叶片。隔板安装在汽缸内,用于分隔不同压力级的蒸汽,其上面也有喷嘴,可引导蒸汽流向,保证蒸汽在各级叶片中的能量转换有序进行。

1.1.3 控制部分

有调节汽阀、危急保安器等。调节汽阀用于控制进 入汽轮机的蒸汽量,从而调整汽轮机的转速和功率,以 满足不同工况的需求。危急保安器是一种安全保护装 置,当汽轮机转速超过规定值时,它能迅速动作,切断 蒸汽供应,避免汽轮机因超速而损坏。

1.2 汽轮机的工作原理

汽轮机是一种将蒸汽的热能转化为机械能的旋转式 动力机械。来自锅炉的高温、高压蒸汽首先进入汽轮机 的喷嘴。在喷嘴中,蒸汽进行绝热膨胀,根据能量守恒 定律,蒸汽的压力和温度降低,而速度迅速增加,将蒸 汽的热能转化为高速流动的动能。这一过程如同水流经 过狭窄的通道时速度加快一样,蒸汽在喷嘴内高速喷射 而出,形成具有高速度的蒸汽流。高速蒸汽流从喷嘴喷 出后,冲击汽轮机的叶片。叶片安装在叶轮上,随着蒸 汽冲击叶片,叶轮和主轴一起旋转。蒸汽在叶片间的通 道中继续膨胀做功,将其动能传递给叶片,使叶片带动 转子旋转。就像风吹动风车叶片使风车转动一样,蒸汽 的动能通过叶片作用于转子,实现了从蒸汽动能到转子 机械能的转换。在多级汽轮机中,蒸汽经过一级喷嘴和 叶片做功后, 其压力和温度仍有剩余。此时蒸汽会进入 下一级喷嘴和叶片继续膨胀做功,如此反复,实现了蒸 汽能量的多级利用,提高了能量转换效率。每一级都对 蒸汽的能量进行提取, 直到蒸汽的能量不能再有效利用 为止,最后从汽轮机排出的蒸汽通常是低压低温状态。 通过这种多级结构, 汽轮机能够更充分地利用蒸汽的能 量,产生更大的功率[1]。

2 汽轮机本体常见故障类型及原因分析

2.1 振动故障

汽轮机振动故障是较为常见且危害较大的问题。其原因主要有以下几方面。一是转子不平衡。制造过程中可能存在转子质量分布不均,如叶片加工误差、安装偏差等,导致在高速旋转时产生离心力不平衡,引发振动。运行过程中,叶片结垢、腐蚀或损坏也可能破坏转子的平衡。二是对中不良。汽轮机与其他相连设备(如

发电机)之间的联轴器安装时如果没有精确对中,在运行中会产生附加的作用力和力矩,使汽轮机产生振动。而且基础不均匀沉降等问题也会导致对中发生变化。三是润滑问题。轴承润滑不良,润滑油油温、油压不正常或者润滑油中含有杂质等,会使轴承与轴颈之间的摩擦力增大且不稳定,进而引起转子振动,这种振动可能会通过轴系传递到整个汽轮机本体。四是气流激振。在汽轮机内部,蒸汽流动的不均匀性,如蒸汽流量、压力的波动,特别是在部分负荷工况下,可能产生气流激振力,当激振力频率接近转子的固有频率时,就会引发强烈振动。

2.2 叶片故障

汽轮机叶片故障严重影响机组的安全稳定运行。首 先是设计因素,叶片的设计强度不足,无法承受正常运 行时的离心力、蒸汽作用力等。例如,在高转速、大负 荷的汽轮机中,如果叶片的截面形状、厚度等设计不合 理,就容易出现故障。材料质量问题也是关键原因。若 叶片材料存在缺陷,如夹杂物、疏松等,会降低叶片的 力学性能。在长期高温、高压的蒸汽作用下,这些有缺 陷的部位容易产生裂纹并扩展。腐蚀和磨损不容忽视。 在湿蒸汽环境下,叶片表面可能发生腐蚀,特别是在含 有腐蚀性成分(如氯离子)的蒸汽中。同时,蒸汽中的 固体颗粒杂质会对叶片造成磨损, 使叶片的厚度减小、 表面粗糙度增加,从而降低叶片的强度和气动性能。还 有振动引起的疲劳损坏。叶片在运行中受到多种激振 力,包括气流激振、转子振动传递等。当叶片的振动频 率与激振力频率合拍时,会产生共振,长时间的共振会 导致叶片根部或其他薄弱部位出现疲劳裂纹, 最终导致 叶片断裂。

2.3 轴承故障

轴承故障在汽轮机运行中较为普遍,对机组的稳定运行影响显著。从轴承的设计角度来看,如果轴承的结构设计不合理,例如轴承的油膜厚度、承载能力计算不准确,在实际运行中可能无法形成稳定的油膜。当转子的载荷发生变化时,轴承无法有效支撑转子,容易出现磨损等故障。润滑系统故障是轴承问题的重要原因。润滑油的质量不合格,如粘度不达标、含有过多水分或杂质,会影响油膜的形成和稳定性。同时,润滑油温过高或过低都会改变润滑油的性能。油温过高会使油膜变薄,降低承载能力;油温过低则会使油的粘度增大,增加摩擦阻力,这两种情况都可能导致轴承故障。安装和对中问题也会引发轴承故障。轴承安装时如果存在偏差,如轴承与轴颈的间隙不均匀,会使轴承局部受力过

大。而且汽轮机与相连设备之间的对中不良会通过轴系传 递额外的力和力矩到轴承上,加速轴承的磨损和损坏。

2.4 汽缸故障

在制造方面,如果汽缸的铸造质量差,存在气孔、砂眼等缺陷,会降低汽缸的强度和密封性。在高温高压的蒸汽环境下,这些缺陷部位可能会产生裂纹,进而导致蒸汽泄漏,影响机组的效率和安全。热应力问题是汽缸故障的主要原因之一。在汽轮机启动、停机过程中,汽缸内外壁会产生较大的温度梯度,从而产生热应力。如果温度变化过快,热应力超过汽缸材料的许用应力,就会使汽缸产生变形、裂纹。特别是在频繁启停的机组中,这种热应力的累积效应更加明显。汽缸的支撑和膨胀不畅也会引发故障。汽缸的支撑结构设计不合理或安装不当,会使汽缸在热膨胀过程中受到限制,产生额外的应力。例如,滑销系统卡涩,无法保证汽缸在轴向和径向的自由膨胀,会导致汽缸变形,影响内部动静部件的间隙,严重时可能造成动静部件摩擦^[2]。

3 汽轮机本体故障检修方法与技术

3.1 故障诊断技术

通过在汽轮机关键部位安装振动传感器,实时监测振动的幅值、频率、相位等参数。例如,利用频谱分析技术,可以将复杂的振动信号分解为不同频率成分,从而识别出是转子不平衡、共振还是其他原因引起的振动。根据振动特征频率与已知故障模式的对比,可以快速定位故障源,如当振动频率为转子旋转频率的整数倍时,可能存在转子部件松动问题。温度监测也是重要变化。异常的温度升高可能暗示着摩擦增大、润滑不良或冷却系统故障等问题。比如轴承温度过高,可能是润滑油不足或轴承磨损严重导致。油液分析技术能有效检测故障。通过对润滑油的理化性质、磨损颗粒的检测,可判断轴承、齿轮等部件的磨损情况。若润滑油中发现大量金属颗粒,且颗粒的形状、尺寸、成分分析表明其来自某一特定部件,则可推断该部件存在磨损问题。

3.2 检修工艺与方法

对于解体检查,在检修前要做好详细的标记和记录, 在拆卸汽轮机部件时,按照规定的顺序进行,如先拆卸 外部附属管道、联轴器,再逐步拆解汽缸盖、转子等。 拆卸过程中要注意保护部件,避免损伤。例如,使用专 用的起吊工具和工装,保证部件平稳拆卸。在解体后, 对每个部件进行外观检查,查看是否有裂纹、磨损、腐 蚀等明显损伤,对于可疑部位可以使用无损检测方法进 一步检查。修复工艺因故障类型而异。对于叶片损伤, 如果是轻微磨损,可以采用打磨修复的方法,恢复叶片的气动外形;若叶片出现裂纹,则要根据裂纹长度和位置,采用焊接修复或更换叶片。对于轴承磨损,可根据磨损程度选择补焊后加工修复或直接更换轴承。在修复过程中,要保证修复质量,如焊接修复时要严格控制焊接参数和工艺,防止产生新的裂纹或变形。组装过程是检修的关键环节。按照与拆卸相反的顺序进行组装,在组装时要确保各部件的安装精度,如转子的对中、轴承间隙的调整等。安装完成后,要进行盘车试验,检查转子转动是否灵活,有无卡涩现象。

3.3 检修工具与设备

在汽轮机本体故障检修中, 合适的工具与设备是顺 利完成检修工作的保障。专用扳手是必不可少的。由于 汽轮机部件的连接螺栓规格多样且往往需要较大扭矩, 如汽缸螺栓等,专用的扭矩扳手可以精确控制拧紧力 矩,保证连接的可靠性,防止螺栓松动或因过度拧紧 而损坏。起吊设备在拆卸和安装大型部件时发挥关键作 用。例如, 行车、电动葫芦等可以吊起汽轮机的转子、 汽缸盖等重物。这些起吊设备要具备足够的起吊能力和 安全性能,并且配有合适的吊具,如钢丝绳、吊钩等, 在起吊过程中要保证部件的平衡和稳定, 避免发生碰撞 和掉落事故。无损检测设备用于检测部件内部和表面的 缺陷。超声检测仪可以检测出部件内部的裂纹、气孔等 缺陷,通过发射和接收超声波,根据反射波的特征来判 断缺陷的位置和大小。磁粉探伤仪用于检测铁磁性材料 表面和近表面的裂纹,通过在部件表面施加磁粉和磁 场,裂纹处会出现磁粉聚集现象,直观显示缺陷。

4 汽轮机本体故障预防措施与维护策略

4.1 故障预防措施

在故障预防方面,要注重运行管理。严格控制蒸汽 参数,包括温度、压力、流量的稳定,防止因参数波动 引发热应力问题和部件损坏。同时,精确调控汽轮机的 转速和负荷,避免超速或过载运行,通过先进的监控系 统实时反馈并及时调整。其次是设备安装环节。在安装 汽轮机本体时,必须保证高精度的对中,无论是转子与 轴承、还是联轴器之间,都要严格按照安装标准执行, 确保间隙均匀合理。安装过程中要注意避免杂质进入设 备内部。再者是环境控制。保持汽轮机运行环境的清洁和干燥,对于蒸汽品质要严格把控,减少其中腐蚀性物质的含量。在停机期间,做好防护措施,防止水汽凝结和腐蚀生锈。人员素质提升也不可或缺。对操作人员和维护人员进行全面培训,包括操作规程、故障判断、应急处理等内容,增强人员对故障的预防意识和应对能力。

4.2 维护策略

对于汽轮机本体的维护,日常检查是重要部分。定期对设备外观进行检查,查看是否有泄漏、磨损、变形等迹象,特别是汽缸、管道的连接部位。对于转子和叶片,利用无损检测技术,如超声检测、磁粉检测等,检查内部裂纹和表面缺陷。润滑系统的维护至关重要。定期更换润滑油,确保润滑油的粘度、清洁度等指标符合要求。持续监测润滑油的油温、油压,保证其在合适的范围内,对润滑系统的各个部件,如油泵、滤清器、油管等进行检查和维护,确保润滑油路畅通。部件的更新策略也要科学规划。对易损部件,如密封件、轴承等,根据其使用寿命和运行状态,及时进行更换。在有条件的情况下,可以采用状态监测技术来确定最佳的更换时间^[3]。

结束语

汽轮机本体的稳定运行是电力生产等众多领域的关键保障。通过对常见故障的深入研究与精准检修,可有效降低设备故障率,提升运行可靠性与安全性。在不断发展的工业进程中,检修人员应持续提升专业素养,紧密关注技术革新,积极探索更高效、更智能的检修方法与策略。同时,加强日常维护保养工作,建立完善的故障预警机制,做到防患于未然。唯有如此,方能确保汽轮机本体在复杂工况下长周期稳定运行,为各行业的持续发展提供强劲动力支撑。

参考文献

[1]杨泞.汽轮机本体常见故障检修[J].湖南农机,2019,3611:64-66.

[2]姚以生.浅谈汽轮机本体常见故障检修[J].中国新技术新产品,2019,23:138.

[3]孟伟.汽轮机转子常见故障及处理方法[J].机械管理 开发,2018,33(10):94-95.