水利水电工程施工中的风险管理与应对措施研究

马尚禄

新疆兵团水利水电工程集团有限公司 新疆 乌鲁木齐 830011

摘 要:水利水电工程作为国家基础设施建设的关键领域,其施工过程复杂且涉及众多风险因素。本文旨在全面分析水利水电工程施工中可能遇到的各种风险,并提出相应的管理与应对措施,以确保工程项目的顺利实施和安全运营,为水利水电行业的可持续发展提供有力保障。

关键词:水利水电;风险管理;应对措施

引言

水利水电工程的建设对于促进经济发展、改善民生、保护生态环境具有重要意义。然而,由于其建设环境的复杂性和施工过程的长期性,施工过程中往往面临诸多风险。因此,加强风险管理与应对,成为确保工程质量和安全的关键环节。

1 水利水电工程施工中的风险分析

1.1 自然灾害风险

水利水电工程所处的自然环境往往地质构造复杂, 气候条件多变,这使得工程极易受到各种自然灾害的侵 袭。地震, 作为最具破坏力的自然灾害之一, 其产生的 强烈震动不仅可能直接损害大坝、水电站等主体结构, 造成裂缝、倒塌等严重后果,还可能引发山体滑坡、岩 石滚落等次生灾害,进一步威胁工程的安全。同时,地 震还可能破坏工程的监测系统、通讯设施等关键设备, 影响工程的正常运营和应急响应能力。洪水,则是水利 水电工程面临的另一大威胁。在雨季或极端天气条件 下,河流水位可能迅速上涨,超出工程设计的防洪标 准,导致漫坝、溃坝等灾难性后果。洪水还可能携带大 量泥沙、杂物等,对水库的蓄水、发电功能造成严重影 响,甚至威胁下游地区的人民生命财产安全。此外,滑 坡和泥石流也是水利水电工程常见的自然灾害风险。这 些灾害往往由降雨、地震等因素诱发,具有突发性强、 破坏力大的特点。它们不仅可能直接冲击工程设施,造 成损坏或失效, 还可能堵塞河道、影响水库的正常泄洪 功能,进而引发更严重的次生灾害[1]。

1.2 工程质量风险

施工质量是水利水电工程的基石,直接关系到工程 的长期稳定运行和整体效益。然而,在实际施工过程 中,由于多种因素的影响,工程质量风险不容忽视。材 料质量问题首当其冲。水利水电工程所使用的材料种类 繁多,如果材料质量不符合设计要求或存在缺陷,将直 接影响工程的耐久性和安全性。例如,混凝土强度不足 可能导致结构渗漏、裂缝等问题;钢筋锈蚀则可能影响 结构的承载能力;防水材料老化则可能导致水库渗水等 严重后果。施工工艺不当也是工程质量风险的重要来 源。水利水电工程的施工涉及多个专业领域和复杂的技 术流程,如果施工工艺选择不当或执行不严格,将导致 工程质量存在隐患。这些隐患可能表现为结构裂缝、渗 漏、变形等,严重影响工程的安全性和使用寿命。例 如, 混凝土浇筑时振捣不充分可能导致混凝土内部空 洞;钢筋绑扎不规范可能影响结构的整体稳定性;金属 结构焊接质量差则可能导致结构在受力时出现裂纹[2]。此 外,施工队伍素质不高也是导致工程质量风险的一个重 要因素。施工队伍是水利水电工程建设的直接执行者, 他们的技能水平、工作态度和责任心直接影响工程质 量。如果施工队伍缺乏专业技能、安全意识淡薄或责任 心不强,可能导致施工过程中出现违规操作、偷工减料 等行为,进而引发工程质量问题。这些问题可能隐藏在 工程的各个角落,成为潜在的"定时炸弹"。

1.3 安全生产风险

水利水电工程施工中,安全生产风险因环境复杂多变而尤为突出。高空作业是常见风险点,施工人员在高处作业时,可能面临坠落及由安全措施不足或操作失误引发的其他事故,如吊装重物时的吊点选择错误或设备故障导致的重物坠落,脚手架材料或搭建不合规造成的倒塌等。水下作业同样风险重重,受水流、水压及能见度限制,施工难度大。若施工人员技能不足或防护不当,易发生溺水、窒息等事故。例如,水下焊接时设备故障或操作不当可能引发火灾或爆炸。爆破作业也是重要风险源,涉及火工品管理、地质及环境因素。爆破设计不合理、火工品管理不善或操作失误均可能导致爆炸,对人员及周边环境构成严重威胁,包括冲击波、飞石伤害及可能引发的山体滑坡、岩石滚落等次生灾害。

此外,施工现场人员众多、设备复杂,管理不善易导致 违规操作、设备故障等安全隐患。如施工人员未遵循设 计图纸或安全规范,设备操作人员未经培训或操作不熟 练等,均可能引发安全事故。

1.4 环境保护风险

水利水电工程建设和运营对周边环境可能产生负面 影响,构成环境保护风险。水体污染是首要问题,施工 废水、废渣若未经处理直接排放,会恶化水质,影响水 生生物生存及居民饮用水安全。水库蓄水后水流减缓, 自净能力下降,可能导致富营养化等水质问题。生态破 坏也是重要风险,大量土石方开挖、植被砍伐等活动会 破坏生态平衡,减少生物多样性,断裂生态链。对湿 地、自然保护区等敏感区域可能造成不可逆损害,如湿 地填埋或排水导致功能丧失。土地退化同样值得关注, 施工和运营可能导致土壤侵蚀、沙化、盐碱化等, 影响 土地利用价值和农业生产能力[3]。如土石方开挖时水土保 持措施不足导致土壤流失, 水库蓄水后水流减缓引发土 壤盐碱化等。这些环境问题不仅影响工程可持续性,还 可能引发社会矛盾。随着公众环保意识提高,对水利水 电工程建设的环境影响日益关注。若环境问题未得有效 解决,可能引发公众不满和抗议,甚至导致工程停工或 取消。因此,水利水电工程建设需充分考虑环境保护, 采取有效措施减轻对周边环境的影响。

2 风险管理与应对措施

2.1 自然灾害风险管理

自然灾害风险管理是水利水电工程建设和运营过程 中不可或缺的一环。为了有效应对地震、洪水、滑坡等 自然灾害带来的风险,必须采取一系列科学、系统的 管理和应对措施。首先,加强灾害监测与预警是防范自 然灾害的关键。水利水电工程应建立完善的灾害监测体 系,包括地震监测站、水文监测站、气象监测站等,实 时监测和记录相关数据,为灾害预警提供可靠依据。同 时,应与当地气象、地震等部门建立紧密的合作关系, 及时获取并发布预警信息,确保工程管理人员和施工人 员能够提前做好防灾减灾准备,如加固工程设施、储备 应急物资、组织人员疏散等。其次,提高工程抗灾能力 是降低自然灾害风险的有效途径。在水利水电工程的设 计和施工过程中, 应充分考虑抗震、抗洪、抗滑等技术 和措施的应用。例如,采用抗震结构设计,提高大坝、 水电站等主体结构的抗震性能;设置防洪堤、溢洪道等 防洪设施,确保工程在极端洪水条件下的安全稳定;采 用抗滑桩、锚杆等抗滑措施,加固边坡和山体,防止滑 坡等灾害的发生。通过这些技术和措施的应用,可以有 效增强工程对自然灾害的抵御能力,降低灾害造成的损失。最后,制定详细的应急预案是应对自然灾害的重要保障。水利水电工程应根据可能发生的灾害类型,制定针对性的应急预案。应急预案应包括抢险救援方案、人员疏散计划、物资储备和调配方案等内容,明确各级管理人员和施工人员的职责和任务,确保在灾害发生时能够迅速、有序地进行应对。同时,还应定期组织应急演练,提高人员的应急反应能力和协同作战能力,确保应急预案的有效性和可行性。

2.2 工程质量风险管理

工程质量风险管理是确保水利水电工程长期稳定运 行和发挥效益的关键。为了全面控制工程质量风险,必须 采取一系列综合性的管理和技术措施。建立健全质量管 理体系是工程质量风险管理的基础。从材料采购、施工 过程到竣工验收,每一个环节都应纳入质量管理体系的 范畴。对于材料采购,应严格筛选供应商,确保材料质 量符合设计要求;在施工过程中,应加强对施工人员的 监督和管理,确保施工工艺的规范性和准确性,同时定 期对施工现场进行检查和评估,及时发现并纠正施工质 量问题;在竣工验收阶段,应严格按照验收标准进行验 收,确保工程质量达到设计要求。提高施工人员的专业 技能和素质是保障工程质量的重要途径。水利水电工程 施工涉及多个专业领域和复杂的技术流程,要求施工人 员具备扎实的专业知识和丰富的实践经验。因此,应加 强对施工人员的技术培训和教育,提高他们的专业技能 和素质, 使他们能够熟练掌握施工工艺和操作技能, 确 保施工质量的稳定性和可靠性。实施质量监测与评估是 工程质量风险管理的重要手段。随着科技的进步, 越来 越多的先进监测技术和手段被应用于工程质量监测中。 水利水电工程应充分利用这些技术,对工程质量进行实 时监测和评估,及时发现问题并整改。例如,可以采用 无损检测技术对混凝土结构进行检测,评估其强度和耐 久性;采用自动化监测系统对大坝、水电站等主体结构 进行实时监测,及时发现并预警潜在的安全隐患。通过 这些监测技术和手段的应用,可以更加全面、准确地了 解工程质量状况,为工程质量风险管理提供有力支持。

2.3 安全生产风险管理

安全生产风险管理是水利水电工程施工中至关重要的环节,它直接关系到施工人员的生命安全以及工程的顺利进行。为了全面管控安全生产风险,必须采取一系列行之有效的措施。建立健全安全生产责任制是安全生产风险管理的基础。水利水电工程应明确各级管理人员和员工的安全职责,形成层层负责、环环相扣的安全管

理网络。从项目高层到一线施工人员,每个人都应清楚 自己的安全责任,确保安全管理工作能够落到实处。同 时,还应建立相应的安全考核机制,对安全管理人员的 履职情况进行定期评估,确保安全管理制度得到有效执 行。加强安全教育培训是提升员工安全意识和操作技能 的重要途径。水利水电工程应定期开展安全教育培训活 动,包括安全法规、操作规程、事故案例分析等内容, 使员工充分认识到安全生产的重要性,并掌握必要的安 全操作技能[4]。通过培训,员工能够更好地识别安全风 险,采取正确的应对措施,从而降低事故发生的概率。 强化现场安全管理是安全生产风险管理的关键环节。水 利水电工程施工现场环境复杂,安全隐患众多。因此, 必须加强施工现场的安全管理, 严格执行安全操作规 程,确保施工活动在安全的环境下进行。具体来说,应 加强对施工现场的安全巡查,及时发现并消除安全隐 患;严格管理火工品等危险物品,确保其储存和使用符 合安全规定;加强设备维护保养,确保设备处于良好状 态;同时,还应建立应急响应机制,一旦发生安全事 故,能够迅速有效地进行救援和处理。

2.4 环境保护风险管理

在水利水电工程的建设和运营过程中, 环境保护风 险管理至关重要。为了确保工程与自然环境的和谐共 生,必须将环境保护理念深深植根于工程设计和施工的 全过程中。从项目初期规划到最终竣工,每一步都应充 分考虑环境保护因素, 力求将对自然环境的影响降至最 低。为了减轻工程对生态环境的破坏,实施生态修复与 保护措施是不可或缺的。针对工程施工中可能造成的植 被破坏、水土流失等问题,应积极开展植树造林、水土 保持等生态修复工作,努力恢复和改善受影响区域的生 态环境。同时,还应加强对野生动植物的保护,确保它 们的栖息地不受破坏,维护生态平衡。此外,加强环境 监测与评估也是环境保护风险管理的重要环节。应定期 对工程周边的空气、水质、土壤等环境因素进行监测, 及时发现并处理可能存在的环境问题。通过科学的评估 方法,对工程的环境影响进行全面、客观的评价,为后 续的环保措施提供有力的数据支持。

2.5 政策与法律风险管理

在水利水电工程的实施过程中, 政策和法律风险同 样不容忽视。为了有效应对这些风险,必须密切关注国 家和地方的政策法规变化。通过及时了解相关政策动 态,可以及时调整工程实施策略,确保工程符合最新的 政策法规要求,避免因政策变动而导致的风险。加强合 同管理是防范合同纠纷和法律风险的关键。在合同签订 和履行过程中,应严格遵守相关法律法规,确保合同条 款的合法性和有效性[5]。同时,还应建立完善的合同管 理制度,对合同的签订、执行和变更等环节进行规范, 确保合同双方的权益得到充分保障。为了进一步提升工 程实施的法律保障水平,建立法律顾问制度显得尤为重 要。通过聘请专业的法律顾问,可以为工程实施提供全 方位的法律支持和咨询。法律顾问不仅可以帮助解决工 程中遇到的法律问题,还可以为工程管理团队提供法律 培训,提高他们的法律意识和风险防范能力。通过这些 措施的实施,可以有效降低政策和法律风险对水利水电 工程的影响,确保工程的顺利进行和长期稳定发展。

结束语

水利水电工程施工中的风险管理与应对是一项系统 工程,需要政府、企业、社会各方共同努力。通过加强 风险识别、评估、监控和应对,可以有效降低各种风险 对工程实施和运营的影响,确保水利水电工程的顺利建 设和安全运营。同时,我们还应不断探索和创新风险管 理与应对的方法和手段,以适应不断变化的市场环境和 工程需求。

参考文献

- [1]梁艳娟.水利水电项目技术的应用与研究[J].制造与自动化,2011(7):153-156.
- [2]玉树伟,廖小新.水利水电项目建设工程项目风险管理研究综述[J].大众科技,2018(10):36-40.
- [3]刘玉晃.我国水利水电工程建设与国际工程管理接轨的探讨[J].科技资讯,2018,(9):37-38.
- [4]李建辉. 关于水利水电工程施工进度的风险分析 [J]. 水利科学与寒区工程,2020,3(4):162-164.
- [5]李春侬,王莹. 基于高边坡挖掘的水利水电工程施工风险评价[J]. 黑龙江水利科技,2022,50(9):188-191.