水利泵站故障预防及维修技术探讨

杨起帆 河北水务有限公司 河北 石家庄 050000

摘 要:水利泵站作为水利系统的重要组成部分,其稳定运行对于保障水资源的高效利用和防洪排涝具有重要意义。本文探讨了水利泵站故障预防及维修技术的相关要点,包括故障诊断、零部件更换与修复、严格执行维修工艺以及检测与调试等方面。通过实施有效的预防措施和采用先进的维修技术,可以显著降低泵站故障率,延长设备使用寿命,确保水利泵站的安全、稳定、高效运行。

关键词:水利泵站;故障预防;维修技术

引言:水利泵站作为水利工程体系中的关键设施, 承担着水资源调配、防洪排涝等重要任务。然而,在实 际运行过程中,水利泵站常因各种原因发生故障,影响 其正常运行和效益发挥。因此,探讨水利泵站的故障预 防及维修技术,对于保障泵站安全稳定运行、提高水资 源利用效率具有重要意义。文章将从故障预防的角度出 发,结合维修技术的实际应用,深入分析水利泵站故障 预防措施,以此为泵站的管理和维护提供参考。

1 水利泵站概述

水利泵站作为水利工程体系中的重要组成部分, 扮 演着水体输送、灌溉、防洪排涝及城市供水等多重角 色,是水资源高效利用与管理不可或缺的基础设施。它 们通常位于河流、湖泊、水库等水源地与需求区域之 间,通过泵的提升作用,实现水资源的跨区域调度和按 需分配。第一,水利泵站主要由泵房、水泵机组、管道 系统、电气控制系统及辅助设施构成。泵房是泵站的主 体建筑,用于安装和保护水泵机组及其附属设备,同时 提供必要的运行环境和安全措施。水泵机组是泵站的核 心,由水泵和驱动电机(或柴油机)组成,负责将水源 地的水提升至一定高度或远距离输送。管道系统则负责 连接水源、水泵机组和出水口,确保水流畅通无阻。第 二,电气控制系统是泵站智能化的关键,通过自动化控 制技术和远程监控系统, 实现泵站的启停、调速、故障 报警及数据记录等功能,极大地提高了泵站运行的效率 和安全性。辅助设施包括进水池、出水池、格栅、阀 门、压力表、流量计等,它们共同协作,确保泵站稳 定、高效地运行。第三,水利泵站的设计与建设需充分 考虑地形、水文、地质条件及实际需求, 合理选择泵 型、确定装机容量及布局,以实现最佳的经济效益和社 会效益[1]。随着科技的进步,现代水利泵站正向着智能 化、自动化、高效节能的方向发展,通过集成物联网、

大数据、云计算等先进技术,实现远程监控、智能调度 和故障预警,为水资源管理和防灾减灾提供更加精准、 高效的支持。

2 水利泵站故障预防措施

2.1 实施定期维护检查

定期维护检查的内容涵盖了泵站设备的各个方面, 包括电气系统、机械设备、管道系统以及控制系统等。 电气系统的检查应包括电缆、接头、断路器、继电器等 关键部件的绝缘性能、连接情况和运行状态; 机械设备 的检查则需关注水泵机组、轴承、密封件等部件的磨损 情况、润滑状况以及紧固件的松动情况;管道系统的检 查则需检查管道是否存在渗漏、腐蚀和堵塞等问题; 控 制系统的检查则需确保PLC、传感器、执行器等设备工 作正常,通信畅通。在实施定期维护检查时,应遵循以 下原则:一是全面性,即对泵站的所有设备和系统进行 全面检查,不留死角;二是细致性,即对每个设备和部 件进行细致入微的检查,发现问题及时处理;三是周期 性,即根据设备的使用情况和制造商的建议,制定合理 的维护检查周期,确保设备得到及时的维护和保养。在 定期维护检查的过程中,还应注重数据的记录和分析。 通过对设备运行状态、故障记录、维护历史等数据的分 析,可以了解设备的性能变化趋势,预测潜在的故障 点,为维修决策提供依据。同时,还可以根据分析结果 对维护计划进行优化,提高维护效率和质量。

2.2 加强设备监测与诊断

泵站设备在长期运行过程中,由于磨损、老化及环境因素等影响,难免会出现各种故障。因此,加强设备监测与诊断成为预防水利泵站故障的重要措施。(1)设备监测是指利用传感器、仪表等检测工具,对泵站设备的运行状态进行实时监测。这包括对设备的振动、温度、压力、流量等关键参数的监测。通过实时监测,可

以及时发现设备存在的异常情况,如振动异常、温度升高等,从而提前预警,防止故障的发生。(2)设备诊断则是在监测的基础上,利用专业的诊断技术和工具,对设备故障进行深入分析,确定故障的原因和位置。这包括振动分析、油液分析、热成像分析等多种诊断方法。通过诊断,可以准确判断设备的故障类型和严重程度,为维修决策提供科学依据。(3)在加强设备监测与诊断的过程中,应注重数据的收集与分析。建立设备运行状态数据库,记录设备的监测数据和诊断结果,为后续的维护和管理提供参考。同时,利用数据分析技术,对设备的运行状态进行趋势预测,提前发现潜在的故障风险,为预防性维护提供依据。

2.3 优化泵站运行环境

水利泵站作为水利工程体系中的核心设施, 其运行 环境的优劣直接关系到泵站设备的稳定性和使用寿命。 优化泵站运行环境,是预防水利泵站故障、提高泵站 运行效率的重要措施。水源中若含有过多的杂质、泥沙 等,不仅会增加水泵的磨损,还可能堵塞管道,影响泵 站的正常运行。应定期对水源进行水质检测, 并采取相 应的净化措施,如设置格栅、沉淀池等,以减少进入泵 站设备的杂质。另外, 泵站设备在运行过程中会产生大 量的热量, 若散热不良, 会导致设备温度升高, 加速老 化,甚至引发故障。应合理设计泵站的通风系统,确保 设备能够得到充分的散热。同时,对于易发热的设备, 如电机、变压器等,还应采取额外的散热措施,如安装 风扇、散热片等[2]。泵站的湿度、温度等环境因素也会对 设备运行产生影响。过高的湿度可能导致设备内部电路 短路, 过低的温度则可能使设备部件脆化。应合理控制 泵站的湿度和温度,确保设备在适宜的环境下运行。最 后, 泵站周边的环境也应得到足够的重视。若泵站周边 存在噪音、振动等污染源,可能会对泵站设备的运行造 成干扰。应采取措施减少周边环境的污染,如设置隔音 屏障、减震装置等。

2.4 提升人员技能与意识

水利泵站作为水利工程体系中的关键组成部分,其 稳定运行离不开高素质的操作与管理团队。泵站人员需 掌握泵站设备的基本原理、操作规范及维护保养知识。 这要求泵站管理人员定期组织技术培训,邀请专家进行 授课,或派遣人员参加外部专业培训,以确保泵站人员 能够紧跟技术发展的步伐,掌握最新的设备操作与维护 技能。同时,通过模拟操作、应急演练等方式,提升人 员的实际操作能力和应急处理能力,确保在紧急情况下 能够迅速、准确地采取措施,避免或减少故障的发生。 泵站运行过程中,安全是首要考虑的因素。泵站人员需时刻保持警惕,严格遵守安全操作规程,防止因操作不当或疏忽大意导致的安全事故。这要求泵站管理人员加强安全教育,定期组织安全培训,提高人员的安全意识和自我保护能力。同时,建立健全安全管理制度,明确安全责任,加强安全监督,确保各项安全措施得到有效执行。

3 水利泵站维修技术要点

3.1 故障诊断准确

在水利泵站维修过程中, 故障诊断的准确性是维修 工作的前提和基础,直接关系到维修效率、设备稳定性 和运行安全。准确的故障诊断能够迅速定位问题所在, 避免盲目维修和更换部件,从而节省维修成本和时间。 同时,准确的诊断还能有效预防故障扩大,保障泵站设 备的长期稳定运行。要实现准确的故障诊断,需要采用 多种方法和手段。首先,维修人员应充分利用先进的检 测设备和仪器,如振动分析仪、温度监测仪、绝缘电阻 测试仪等,对泵站设备的运行状态进行实时监测和分 析。其次,结合设备的运行历史和维护记录,进行故障 原因的深入分析,寻找故障发生的规律和趋势,还可以 借助专家系统和人工智能技术,提高故障诊断的准确性 和智能化水平。另外,维修人员的专业技能和经验对于故 障诊断的准确性至关重要。维修人员应具备扎实的电气、 机械等专业知识,熟悉泵站设备的结构和工作原理,能够 准确判断故障类型和位置。同时,维修人员还应具备丰 富的实践经验,能够灵活应对各种复杂故障情况。

3.2 零部件更换与修复

零部件的更换与修复需要严格遵循技术要求。首 先,维修人员需要准确判断故障零部件的类型、位置和 损坏程度,以便选择合适的更换或修复方案。其次,在 更换或修复过程中,维修人员需要严格遵守操作规程, 确保操作规范、准确,避免对设备造成二次损坏。对 于无法修复或修复价值不高的零部件, 更换是最佳的选 择。在更换过程中,维修人员需要确保新零部件与原装 零部件的型号、规格一致,以保证设备的兼容性和性 能,还需要注意新零部件的安装位置和固定方式,确保 安装牢固、可靠[3]。对于具有修复价值的零部件,可以采 用多种修复技术进行修复。例如,对于磨损严重的轴承, 可以采用镀铬、堆焊等方法进行修复;对于断裂的轴,可 以采用焊接、冷矫直或热矫直等方法进行修复。在修复过 程中,维修人员需要根据零部件的材质、损坏程度和修 复要求,选择合适的修复方法和材料。最后,无论是更 换还是修复,都需要对零部件进行质量检测。质量检测

包括外观检查、性能测试等多个方面,以确保更换或修 复后的零部件性能达到或接近原装零部件的水平,还需要对维修过程进行记录,以便后续跟踪和分析。

3.3 严格执行维修工艺

在水利泵站维修过程中,严格执行维修工艺是确保 维修质量和设备稳定运行的关键环节。维修工艺不仅涵 盖了维修步骤和操作流程,还涉及了维修过程中所需使 用的工具、材料和技术标准。(1)维修工艺是维修工作 的指导原则,它确保了维修过程的规范性和一致性。通 过严格执行维修工艺,可以最大限度地减少维修过程中 的失误和不确定性,提高维修质量和效率。同时,维修 工艺还可以为维修人员提供明确的操作指南,降低维修 难度和风险。(2)维修工艺通常包括维修前的准备工 作、维修步骤和操作流程、维修后的检测和验收等多个 环节。在维修前的准备工作中,维修人员需要了解设备 的结构和工作原理,熟悉维修工艺的要求和注意事项。 在维修步骤和操作流程中,维修人员需要按照规定的步 骤和顺序进行操作,确保每个步骤都符合技术标准和质 量要求。在维修后的检测和验收中,维修人员需要对维 修结果进行质量检测和功能测试,确保设备恢复正常运 行。(3)在执行维修工艺时,维修人员需要严格遵守操 作规程和安全规范,确保操作过程的安全性和可靠性, 维修人员还需要具备丰富的专业知识和实践经验, 能够 准确判断故障类型和位置,选择合适的维修方法和材 料。在执行维修工艺过程中,维修人员还需要注意维修 过程中的细节和关键点,确保维修质量和设备性能。

3.4 检测与调试

3.4.1 初步检测与故障诊断

维修开始前,需对泵站设备进行全面检测,以初步 判断故障类型和位置。这包括使用振动分析仪、温度监 测仪等专业设备,对设备的运行状态进行实时监测。 通过数据分析,维修人员能够准确识别出设备的异常状态,为后续维修工作提供有力依据。

3.4.2 维修过程中的质量检测

在维修过程中,每一步操作都需要进行质量检测, 以确保维修质量和设备性能。这包括对更换或修复的零 部件进行性能测试,以及对整个维修过程进行质量监 控。通过严格的质量检测,可以及时发现并纠正维修过 程中的问题,确保维修结果符合技术标准。

3.4.3 系统调试与功能测试

维修完成后,需要进行系统调试与功能测试。这包括启动设备,观察其运行状态,检查是否有异常声音、振动等。同时,还需要对设备的性能进行测试,如流量、扬程、效率等参数,以确保设备满足设计要求。通过系统调试与功能测试,可以验证维修结果,确保设备恢复正常运行。

3.4.4 安全保护测试与验证

在检测与调试过程中,安全保护测试同样重要。这包括对设备的过热保护、过载保护等安全装置进行测试,确保其能够正常工作。通过安全保护测试,可以及时发现并消除潜在的安全隐患,确保设备在运行过程中的安全性。

结语

总之,水利泵站的故障预防及维修技术是确保其长期稳定运行的关键。通过加强日常巡检、实施有效的预防措施以及采用先进的维修技术,可以显著降低泵站故障率,延长设备使用寿命。未来,随着科技的不断进步和水利事业的发展,需要不断探索和创新更加高效、智能的故障预防和维修方法,以适应水利泵站发展的新需求。同时,加强人员培训和技术交流,提高泵站管理和维护水平,也是保障水利泵站安全稳定运行的重要途径。

参考文献

- [1]黄健,黄胜.机电设备故障诊断与维修[J].设备管理与维修,2021(15):1-2.
- [2]范志山.浅淡煤矿机电设备故障维修管理及预防措施[J].2021(2012-8):62-62.
- [3]吴春雷.煤矿机电设备常见故障维修分析及预防措施研究[J].中国石油和化工标准与质量,2020,40(16):1-2.