无人机在输电线路运维检修应用

俞红彬

宁夏送变电工程有限公司 宁夏 银川 750000

摘 要: 电力供应的稳定与安全,直接关联着社会的正常运转与人们的日常生活,而输电线路则是这一供应体系的"生命线"。本文围绕无人机在输电线路运维检修中的应用展开。先简述无人机技术,着重阐述其在输电线路运维检修中的关键技术,包括自主巡检、数据采集与处理、路径规划及智能诊断技术。同时指出存在续航能力有限、通信稳定性欠佳、数据处理分析难以及定位精度不够等问题。并展望发展趋势,如长续航、通信技术改进、智能化水平提升及多领域融合应用,为该领域进一步研究与实践提供参考。

关键词: 无人机; 输电线路; 运维检修; 应用

引言:随着电力行业的发展,输电线路的运维检修工作愈发重要。传统人工巡检方式效率低、风险高且难以满足复杂环境与大规模线路的需求。无人机技术凭借其灵活性、高效性等优势,逐渐在输电线路运维检修中崭露头角。它能够快速获取线路信息,提高运维检修效率与质量。然而,该技术在实际应用中仍面临诸多挑战。旨在深人探讨无人机在输电线路运维检修中的应用情况、存在问题及未来发展趋势。

1 无人机技术概述

无人机,即无人驾驶飞机,是一种通过无线电遥控 设备或机载计算机程控系统进行操控的不载人飞行器。 其发展源于军事需求,如今在民用领域也得到了广泛应 用。从结构上看,无人机主要由机身、动力系统、飞控 系统、通信系统等部分组成。机身作为载体, 需具备良 好的空气动力学性能与结构强度;动力系统为无人机提 供飞行所需动力,常见的有电动和燃油动力,电动动力 清洁高效,适用于小型无人机,燃油动力则续航更久, 多用于大型无人机。飞控系统是无人机的 "大脑",它 能实时感知无人机的姿态、位置等信息,并自动调整飞 行状态,确保飞行稳定。通信系统负责实现地面控制站 与无人机之间的数据传输,包括指令下达与飞行数据、 采集信息的回传。在功能方面,无人机可搭载多种任务 载荷,如光学相机、红外热成像仪等,以满足不同场景 下的监测需求。凭借其灵活机动、可抵达复杂危险区域 的特点,无人机在输电线路运维检修、测绘、农业植保 等领域展现出巨大的应用潜力[1]。

2 无人机在输电线路运维检修中的关键技术

2.1 自主巡检技术

自主巡检技术是无人机在输电线路运维检修中的核 心能力之一。该技术依托先进的传感器与高精度定位系 统,使无人机能够按照预设程序自主完成对输电线路的 巡检任务。通过搭载激光雷达、视觉传感器等,无人机 可实时感知周围环境,自动识别输电线路的杆塔、导线 等部件。在巡检过程中,它能精准定位自身位置,依据 线路的走向和特征,自主规划飞行轨迹,无需人工实时 操控。这不仅极大地提高了巡检效率,还能避免因人为 因素导致的疏漏。同时,自主巡检技术可确保无人机在 复杂环境和恶劣天气条件下持续稳定工作,为输电线路 的安全运行提供了可靠保障。

2.2 数据采集与处理技术

数据采集与处理技术是无人机发挥作用的关键环节。在输电线路巡检时,无人机通过搭载高清摄像头、红外热成像仪等设备,全方位采集线路的图像、温度等数据。这些数据能直观反映线路的运行状态,如导线是否存在破损、发热等异常情况。采集到的数据实时传输至地面控制中心,借助专业的数据处理软件,对海量数据进行快速分析、筛选与整理。通过图像识别算法,可精准识别出线路部件的缺陷和故障;利用数据分析模型,能对线路的运行趋势进行预测。数据采集与处理技术为输电线路的运维检修提供了详实、准确的信息依据,助力运维人员及时发现并解决问题。

2.3 路径规划技术

路径规划技术对于无人机高效完成输电线路巡检至 关重要。它综合考虑输电线路的布局、地形地貌、障碍 物分布以及无人机自身的性能参数等因素。首先,利用 地理信息系统(GIS)获取输电线路周边的地理环境数 据,结合线路的三维模型,规划出初步的巡检路径。接 着,通过实时避障算法,根据无人机传感器反馈的信 息,动态调整路径,确保无人机在飞行过程中能够安全 避开障碍物,如树木、建筑物等。路径规划技术能够优 化无人机的飞行轨迹,减少不必要的飞行距离,提高巡检效率,同时降低无人机与障碍物碰撞的风险,保障无人机和输电线路的安全。

2.4 智能诊断技术

智能诊断技术是基于大数据和人工智能算法的一项前沿技术。无人机采集到输电线路的各种数据后,智能诊断系统对这些数据进行深度学习和分析。通过建立故障诊断模型,系统能够自动识别数据中的异常特征,并判断输电线路是否存在故障以及故障的类型和严重程度。例如,根据红外热成像数据判断导线连接点是否过热,依据图像数据识别绝缘子是否有破损。与传统诊断方法相比,智能诊断技术具有更高的准确性和时效性,能够快速定位故障点,为运维人员制定维修方案提供有力支持,大大缩短了故障处理时间,提高了输电线路的可靠性和供电稳定性[2]。

3 无人机在输电线路运维检修中存在的问题

3.1 续航能力有限

目前,续航能力不足是无人机在输电线路运维检修作业中面临的显著难题。大部分用于此类任务的无人机依赖电池供电,然而电池能量密度较低,致使其续航时间较短。通常情况下,一次充电后无人机的飞行时长仅能维持几十分钟到几个小时。输电线路分布广泛,常跨越山区、荒野等地形复杂区域,单次充电根本无法满足长距离的巡检需求。若要完成对较长线路的巡检工作,就不得不频繁更换电池或中途进行充电,这不仅极大地降低了巡检效率,还增加了人力和时间成本。此外,恶劣的天气条件,如大风、低温等,会加速电池电量的消耗,进一步缩短无人机的续航里程,严重限制了其在输电线路运维检修中的应用范围和效果。

3.2 通信稳定性问题

无人机与地面控制中心之间的通信稳定性欠佳,给输电线路运维检修工作带来了诸多困扰。在复杂的地形环境中,例如山谷、高楼大厦密集的区域,信号极易受到遮挡、反射以及干扰,进而导致通信中断或数据传输延迟。当无人机处于偏远地区执行任务时,信号强度会大幅减弱,使得地面控制人员难以实时获取无人机采集的数据,也无法对其进行有效的操控。此外,在电磁环境复杂的区域,如变电站附近,各类电磁信号相互交织,严重干扰无人机的通信频段,致使无人机出现失控、飞行姿态异常等危险情况。通信稳定性问题不仅增加了无人机执行任务的风险,还无法保证数据的可靠传输,极大地影响了任务的顺利完成。

3.3 数据处理与分析难度大

无人机在输电线路巡检过程中会收集海量的数据,这些数据的处理与分析工作面临着严峻挑战。一方面,数据类型繁杂多样,涵盖高清图像、红外热成像数据、激光雷达点云数据等,每种数据都具有独特的格式和特点,需要适配不同的处理算法和工具。另一方面,数据量极其庞大,对硬件的计算能力提出了极高的要求,现有的数据处理设备往往难以满足实时处理的需求。同时,数据的准确性和可靠性受到多种因素的影响,如图像采集时光线条件的变化、传感器的精度差异等,这进一步加大了数据分析的难度。从海量数据中精准提取出有价值的信息,如故障隐患、线路异常等,需要复杂的算法和专业的技术人员,目前在数据处理与分析的效率和准确性方面,仍存在很大的提升空间。

3.4 定位精度不够

在输电线路巡检工作中,无人机必须精准定位到线路的各个部件,这对及时发现潜在故障、保障线路安全稳定运行极为关键。然而,当前普遍采用的 GPS 定位技术,在实际应用场景中存在诸多局限。在山谷地带,由于四周高山环绕,卫星信号极易被山体阻挡、反射与折射,导致信号衰减和多路径效应,使得无人机获取的定位信息出现偏差。而在城市高楼之间,林立的高楼大厦同样会对 GPS 信号形成遮挡,造成信号中断或错误接收。定位误差一旦产生,后果不容小觑。

4 无人机在输电线路运维检修中的发展趋势

4.1 长续航技术的发展

在无人机于输电线路运维检修的应用中, 长续航技 术的发展至关重要。目前, 电池技术正朝着高能量密度 方向不断突破。例如,新型锂电池的研发取得显著进 展,其能量密度逐步提升,能够在相同电量下为无人机 提供更持久的动力支持,大大延长无人机单次飞行时 长。同时, 氢燃料电池也因其高能量转换效率和较高的 能量密度,成为无人机长续航技术的研究热点。相较于 传统电池, 氢燃料电池可使无人机续航能力实现质的飞 跃。除了电池技术革新,能量回收利用技术也在不断探 索。通过在无人机飞行过程中,利用空气动力学原理, 将部分动能转化为电能存储起来,实现能量的二次利 用,减少能源消耗,进一步提升续航里程。此外,太阳 能辅助供电技术也被广泛研究。在无人机机体表面铺设 高效太阳能电池板,在光照充足时,为无人机补充电 能,延长续航时间,特别适用于长时间、远距离的输电 线路巡检任务。这些长续航技术的发展,将有力推动无 人机在输电线路运维检修领域的广泛应用与深度发展。

4.2 通信技术的改进

在无人机对输电线路进行运维检修时,通信技术的 改进对保障作业高效、安全开展意义重大。首先,在信 号传输稳定性方面, 研究人员致力于降低信号受复杂地 形与电磁环境干扰的影响。例如,采用自适应抗干扰算 法, 让无人机通信系统能根据实际环境自动调整信号传 输方式,增强信号在山区、变电站附近等复杂区域的穿 透能力与抗干扰能力,减少信号中断与延迟。传输速度 的提升也是关键方向。随着 5G 技术的普及, 其高速率、 低时延特性为无人机数据传输带来了质的飞跃。通过搭载 5G 通信模块,无人机能够将高清图像、大量的线路监测 数据快速传输回地面控制中心,实现实时数据共享,运维 人员可据此迅速做出决策。同时,通信频段的优化也在持 续进行。研发人员探索新的通信频段,避免与其他电子设 备产生频段冲突,确保无人机通信的独立性与稳定性。并 且,通过多频段融合通信技术,让无人机在不同场景下灵 活切换频段,始终保持最佳通信状态。通信技术的不断改 进,将使无人机在输电线路运维检修中实现更稳定、高速 的数据交互,推动该领域的智能化发展。

4.3 智能化水平的提高

随着科技的不断进步, 无人机在输电线路运维检修 中的智能化水平正迅速提升。在巡检过程中,智能识别 技术愈发成熟, 无人机可凭借先进的图像识别与深度 学习算法, 自动识别输电线路上的各类部件, 精准定位 螺丝松动、导线磨损、绝缘子破裂等异常情况,极大提 高了巡检的准确性与效率。在故障诊断方面,智能化水 平的提高也尤为显著。通过对大量历史数据的学习与分 析,无人机搭载的智能诊断系统能够快速判断故障类 型,并预测潜在风险。例如,依据线路的温度变化、电 流波动等数据,提前预警可能出现的过热故障,为运维 人员提供充足的应对时间。此外, 无人机的自主决策能 力也在不断增强。面对复杂多变的环境, 如突发恶劣天 气、障碍物阻挡等,无人机能够基于实时获取的信息, 自主规划最优飞行路径,调整巡检策略,无需人工干预 即可完成任务。这不仅减轻了运维人员的工作负担,还 提高了作业的安全性与可靠性。智能化水平的持续提 高, 让无人机在输电线路运维检修中发挥更大作用, 为 电力系统的稳定运行提供有力保障。

4.4 多领域融合应用

在输电线路运维检修中, 无人机多领域融合应用 成为显著趋势。首先,与地理信息系统(GIS)深度融 合,无人机借助 GIS 的高精度地图数据,能精准规划 飞行路径, 对复杂地形的输电线路实现全方位、无死角 巡检。在山区,可依据地形起伏调整飞行高度,确保清 晰拍摄线路情况,同时避免碰撞风险。无人机与电力设 备监测系统融合,可实时获取线路运行参数,如电流、 电压等。通过结合自身采集的图像信息, 对线路健康状 况进行综合评估。当检测到电流异常且对应位置图像显 示导线有异常发热迹象时, 能迅速判断线路故障, 为维 修提供精准依据。再者,与气象监测系统的融合,让无 人机在执行任务时能实时掌握天气动态。在恶劣天气来 临前,提前调整巡检计划,保障作业安全。还能根据气 象数据,分析天气对输电线路的长期影响,如大风、暴 雨可能导致的线路位移、杆塔倾斜等, 提前采取防护措 施。通过多领域融合应用,无人机在输电线路运维检修 中,从单一巡检向综合智能服务转变,全面提升电力系 统运维的质量与效率[3]。

结束语

无人机在输电线路运维检修领域的多领域融合应用,已彰显出极大优势。通过与 GIS、电力设备监测、气象监测等系统融合,实现了精准巡检、高效故障判断与安全防护。展望未来,随着跨领域技术的深度交融,无人机将具备更强大的功能,持续优化运维流程,降低人力成本,提升电力供应稳定性。相信在不久的将来,无人机将成为输电线路运维检修不可或缺的关键力量,推动电力行业迈向智能化、高效化的新台阶。

参考文献

- [1]王靖宇. 无人机在输电线路运维检修应用[J]. 数字 化用户, 2023.135-136
- [2]彭真君,魏汉峰.无人机在输电线路运维检修应用研究[J]. 百科论坛电子杂志,2023.148-189
- [3]殷明,潘文鹏,黄忠华. 无人机在输电线路运维检修应用研究[J]. 百科论坛电子杂志, 2018a, 000(008):599-601