电力调度运行电力技术的应用

赵永明 张志壮 辛 婷 内蒙古电力(集团)有限责任公司巴彦淖尔供电分公司 内蒙古 巴彦淖尔 015000

摘 要: 电力调度运行是电力系统安全稳定运行的关键环节, 电力技术的应用在其中发挥着至关重要的作用。本文探讨了电力调度运行中电力技术的关键应用, 包括自动化监控、智能调度、稳定控制及数据分析等方面。这些技术的应用不仅提高电力调度的效率和准确性, 还增强电网的稳定性和安全性。通过不断优化和创新电力技术, 可以进一步提升电力调度运行的水平, 为电力系统的可持续发展提供有力支持。

关键词: 电力调度; 电力技术; 应用

1 电力调度运行概述

1.1 电力调度运行的基本概念

电力调度运行是电力系统运行管理中的一个关键环 节,它涉及对电网中发电、输电、配电及用电等各个环 节的协调与控制。简单来说, 电力调度就是根据电力系 统的实时运行状态、负荷需求以及发电能力,通过一系 列复杂的计算与优化策略, 合理分配和调度电力资源, 确保整个电网的安全、稳定、经济运行。电力调度运行 的核心在于信息的实时采集与处理,通过安装在电网各 关键节点的传感器和测量设备,调度中心能够实时获取 电网的电压、电流、功率等关键参数, 进而对电网的潮 流分布、稳定性进行评估。在此基础上, 调度人员会依 据预设的调度策略和算法,对发电机的出力、变压器的 分接头位置、线路的开合等进行调整, 以达到优化资源 配置、提高供电可靠性和经济性的目的。随着智能电网 技术的发展,大数据、云计算等先进技术在电力调度领 域得到了广泛应用。通过对历史数据的挖掘与分析,调 度人员能够更准确地预测未来的负荷需求,制定更为合 理的调度计划。

1.2 电力调度运行的重要性

电力调度运行在电力系统中的作用至关重要,它直接关系到电网的安全稳定运行和电力用户的正常供电。第一,电力调度能够确保电网在各种工况下的稳定运行,无论是正常运行状态还是故障状态,电力调度都能通过合理的调度策略,保持电网的电压和频率在允许范围内波动,防止因电压过低或过高、频率偏离正常值而导致的设备损坏或停电事故[1]。第二,电力调度有助于提高电力系统的经济性,通过优化发电资源的配置,减少不必要的线路损耗和发电成本,电力调度能够实现电力资源的最大化利用。这对于降低全社会的用电成本、促进能源的可持续发展具有重要意义。第三,电力调度还

能提升电力供应的可靠性和灵活性,面对不断变化的负荷需求和发电能力,电力调度能够迅速调整电网的运行状态,确保在各种极端天气或突发事件下,电力用户仍能获得稳定可靠的电力供应。这对于维护社会稳定、保障人民生产生活具有重要意义。

2 电力调度运行中电力技术应用现状

2.1 自动化控制技术应用

电力调度运行中的自动化控制技术是电力行业现代 化发展的显著标志,其应用显著提升了电网的调度效率 和管理水平。自动化控制技术在电力调度中的应用主 要体现在几个方面: 首先, 它通过实时监测电网的运行 状态,包括电压、电流、频率等关键参数,确保电网在 安全范围内运行。一旦检测到异常情况,如电压波动或 电流过载,系统能够立即发出警报并启动相应的保护措 施, 防止故障扩大。其次, 自动化控制技术能够根据实 时的负荷需求和发电能力,自动调整发电机的出力,优 化电力资源的分配,确保供需平衡。另外,自动化控制 技术还能够实现电力设备的远程控制和故障预测, 通过 数据分析提前发现潜在问题,采取预防措施,避免事故 的发生。随着技术的不断进步,自动化控制技术正在向 更高层次发展。大数据技术的应用也使得自动化控制系 统能够处理和分析海量的电网数据,为调度决策提供更 加科学的依据。

2.2 通信技术应用

通信技术在电力调度运行中的应用同样至关重要。它不仅实现了电网信息的实时采集和传输,还为电力系统的远程监控和控制提供了可能。通信技术的应用还体现在电力系统的远程控制和故障诊断上,调度人员可以通过通信网络对电网中的设备进行远程操作,如调整发电机的出力、切换线路等。这不仅提高了调度效率,还降低了人工巡检和操作的风险。通信技术还能够实现对

电力设备的实时监测和故障诊断,通过数据分析提前发现设备故障的迹象,采取预防措施,避免事故的发生。 光纤通信技术和无线通信技术在电力调度中得到了广泛应用,光纤通信技术以其高带宽、低衰减、抗干扰能力强的特点,成为电力调度通信网络的首选。而无线通信技术则以其灵活性和便捷性,在电力巡检、应急通信等方面发挥着重要作用。随着5G技术的普及和应用,无线通信技术在电力调度中的潜力将得到进一步释放,为电力系统的智能化、网络化发展提供有力支持。

2.3 智能电网技术应用

智能电网技术是电力调度运行中的前沿技术,它集 成了自动化控制技术、通信技术、大数据技术和人工智 能技术等先进技术, 实现了对电力系统的全面智能化管 理。智能电网技术在电力调度中的应用主要体现在几个 方面: 它能够通过大数据分析和机器学习算法, 自动学 习和优化调度策略, 实现更高效、更准确的电力调度。 智能电网技术能够实现对电力设备的智能监控和故障预 测,及时发现并解决潜在问题,提高系统的可靠性和稳 定性。智能电网技术还能够根据用户的用电习惯和需求 进行个性化调度,提供更加贴合用户需求的服务[2]。在智 能电网的建设过程中, 分布式能源、储能系统、电动汽 车等新型电力元素的接入和调度成为重要挑战。智能电 网技术通过先进的算法和模型,实现了对这些新型电力 元素的优化调度和管理,提高电网的灵活性和适应性。 智能电网技术还能够实现电力市场的智能化运营和管 理, 为电力市场的健康发展提供有力支持。

3 电力技术在电力调度运行中的关键应用分析

3.1 综合自动化技术的应用

综合自动化技术在电力调度运行中的应用,是电力行业迈向智能化、自动化管理的重要一步。首先,综合自动化技术实现了对电网状态的实时监测和智能控制。通过安装在电网各关键节点的传感器和测量设备,系统能够实时采集电压、电流、功率等关键参数,并对这些数据进行快速分析和处理。基于这些数据,系统能够自动调整电力设备的运行状态,确保电网在安全、稳定的范围内运行。这不仅提高电网的可靠性和稳定性,还有效降低因故障导致的停电风险。其次,综合自动化技术通过智能化的算时对。这不仅耗时费力,还容易因人为因为法律等致调度失误。而综合自动化技术通过智能化的算法对往往需要人工参与,不仅耗时费力,还容易因人为因素导致调度失误。而综合自动化技术通过智能化的算法和模型,能够自动计算出最优的调度方案,并在短时内实现调度指令的下发和执行。这不仅大大提高调度的效率,还确保调度的准确性,降低了因调度失误导致的经

济损失。另外,综合自动化技术还具备强大的数据分析 和故障诊断能力,通过对历史数据的挖掘和分析,系统 能够发现电网运行中的潜在问题和故障隐患,为调度人 员提供预警信息。系统还能够对故障进行快速定位和分 析,提供故障处理建议,帮助调度人员迅速恢复电网的 正常运行。在电力调度运行中,综合自动化技术的应用 还体现在对电力设备的远程监控和控制上。通过通信网 络,调度人员可以实时查看电力设备的运行状态和参数 信息,实现远程控制和调节。

3.2 稳定安全控制技术的应用

稳定安全控制技术在电力调度运行中的应用,是确 保电网安全稳定运行的重要保障。稳定安全控制技术能 够实时监测电网的电压和频率波动情况, 当电网出现电 压过低或过高、频率偏离正常值等异常情况时, 系统能 够立即发出警报,并启动相应的保护措施,如切除部分 负荷或调整发电机的出力,以恢复电网的正常运行。这 不仅防止了因电压或频率异常导致的设备损坏和停电事 故,还确保了电网的稳定性和可靠性。稳定安全控制技 术还能够对电网的潮流分布进行实时监测和控制,通过 计算和分析电网中各个节点的潮流情况, 系统能够发现 潮流过载或不平衡等问题, 并采取相应的调度措施进行 调整。这不仅提高电网的输电能力和效率,还降低因潮 流问题导致的电网故障风险。稳定安全控制技术还具备 强大的故障预测和诊断能力,通过对电网运行数据的分 析和挖掘,系统能够发现潜在的故障隐患和异常趋势, 为调度人员提供预警信息。系统还能够对故障进行快速 定位和分析,提供故障处理建议,帮助调度人员迅速恢 复电网的正常运行。

3.3 AEMS技术的应用

AEMS(高级能量管理系统)技术在电力调度运行中的应用,为电网的智能化、自动化管理提供了有力支持。首先,AEMS技术能够实时监测和分析电网的全局运行状态,通过安装在电网各关键节点的测量设备,系统能够实时采集电压、电流、功率等关键参数,并对这些数据进行快速分析和处理。基于这些数据,系统能够全面评估电网的稳定性和经济性,为调度人员提供决策支持^[3]。其次,AEMS技术具备强大的动态分析和优化调度能力,通过对电网运行数据的实时分析和挖掘,系统能够发现潜在的稳定问题和经济瓶颈,并采取相应的调度措施进行调整。这不仅提高电网的稳定性和经济性,还降低因调度不当导致的经济损失。另外,AEMS技术还能够实现对连锁故障的预防和控制,通过对电网运行数据的实时监测和分析,系统能够发现潜在的连锁故障风

险,并采取相应的预防措施进行干预。这不仅防止连锁 故障的发生和扩大,还确保电网的安全稳定运行。在电 力调度运行中,AEMS技术的应用还体现在对电力市场的 智能化运营和管理上。通过集成市场信息和电价数据, 系统能够实现对电力市场的实时监测和分析,为电力交 易和调度提供决策支持。

4 电力调度运行电力技术应用对策与建议

4.1 加强技术研发与创新

在电力调度运行中,加强技术研发与创新是推动电 力行业持续发展的关键。随着科技的飞速发展,新的电 力技术和设备不断涌现, 为电力调度运行提供了更多 的可能性。因此,必须加大对电力技术的研发投入,鼓 励技术创新, 以提升电力调度运行的智能化、自动化水 平。加大对电力调度自动化系统的研发力度,提升其数 据处理、分析和决策能力。通过引入先进的算法和模 型,实现对电网运行状态的实时监测和预警,提高调度 的准确性和及时性。还应加强对智能电网技术的研究, 推动其在电力调度中的应用, 以实现电力资源的优化配 置和高效利用。随着电网规模的扩大和复杂性的增加, 电力调度面临的安全风险也在不断增加。因此需要研发 更加先进的安全防护技术和措施, 如网络安全防护、数 据加密等,以确保电力调度的安全稳定运行。还应加强 对新能源和分布式能源的调度技术研究, 随着新能源的 快速发展和分布式能源的广泛应用, 电力调度面临着新 的挑战和机遇。需要研发适应新能源特性的调度技术和 算法,以实现对新能源的有效接入和调度,推动能源结 构的优化和转型。

4.2 提升技术人员素质与能力

电力调度运行的技术应用离不开高素质的技术人员 队伍。提升技术人员的素质和能力是推动电力调度技术 应用的重要一环。加强对技术人员的培训和教育,通 过定期举办技术培训班、研讨会等活动,提升技术人员 对新技术、新设备的认识和掌握程度。还应鼓励技术人 员自主学习和钻研,不断提升自身的专业素养和技能水 平。注重技术人员的实践锻炼,通过参与实际项目的实 施和运维工作,让技术人员在实践中不断积累经验、提 升能力。还应建立技术人员之间的交流和学习机制,促 进彼此之间的经验分享和技术交流^[4]。建立完善的激励机制,激发技术人员的创新精神和积极性,通过设立技术创新奖励、职称晋升等激励措施,鼓励技术人员积极参与技术创新和研发工作,为电力调度技术的发展贡献自己的力量。

4.3 完善政策支持与法规建设

电力调度运行的技术应用还需要完善的政策支持和 法规建设作为保障。政府应加大对电力调度技术应用的 政策扶持力度,制定有利于技术创新和产业发展的政 策措施。首先应出台鼓励技术创新和产业发展的优惠政 策,如提供研发资金支持、税收减免等激励措施,鼓励 企业和科研机构积极参与电力调度技术的研发和应用。 其次,加强对电力调度市场的监管和规范,通过制定完善的法规和标准体系,规范电力调度市场的运行秩序, 保障各方的合法权益。同时加强对电力调度技术的评估 和认证工作,确保技术的可靠性和安全性。最后,建立 完善的电力调度技术标准和规范体系,通过制定统一的 技术标准和规范,推动电力调度技术的标准化和规范化 发展,提高技术的通用性和互操作性。这将有助于降低 技术应用成本、提升技术应用效率,推动电力行业的持 续健康发展。

结束语

综上所述,电力技术在电力调度运行中的应用是推动电力行业发展的重要力量。随着技术的不断进步和创新,有理由相信,未来的电力调度将更加智能化、自动化和高效化。同时,也应持续关注电力技术的最新动态和发展趋势,加强技术研发和创新,为电力系统的安全稳定运行贡献更多的智慧和力量。

参考文献

[1]解磊,吴风武,田萌.在生产工作中工厂电气自动化控制技术的应用[J].冶金管理,2022(3):75,77.

[2]刘俊碧.电力系统运行中电气自动化技术的应用策略[J].通信电源技术,2023,37(2):112-113.

[3]郭帅.电力企业电气自动化技术的应用[J].电子技术与软件工程,2022(2):121-122.

[4]段燕茹.基于智能电网的电力调度自动化与控制系统实现[J].电子设计工程,2021,28(04):189-193.