城市水利水电建筑基础设施施工技术浅析

齐锋! 燕志恒! 夏冰! 罗智星? 杨晶晶3 夏青4

- 1. 宁夏建筑科学研究院集团股份有限公司 宁夏 银川 750021
 - 2. 西安建筑科技大学 陕西 西安 710055
 - 3. 兰州交通大学 甘肃 兰州 730070
 - 4. 宁夏筑之信检测有限公司 宁夏 银川 750004

摘 要:城市的健康可持续发展离不开完备的基础设施支撑,而水利水电建筑设施在其中占据关键的推动地位。本文针对城市水利水电建筑基础设施施工技术展开分析。先阐述水利水电工程施工关键节点,对时间、场地、基础、技术等都有特定的要求。流程上来讲,地基处理、混凝土施工、土石坝施工、结构与机电设备安装等都有严格的要求。最后探讨其施工技术的未来发展,进行展望,包括了信息化、绿色施工技术的应用以及智能化施工设备的研发与应用,旨在为相关工程提供技术参考。

关键词:城市水利水电;建筑基础设施;施工技术

引言:随着美丽乡镇建设的不断推进,城市水利水 电建筑基础设施的重要性直接关乎建设成果的使用效 果。水利水电工程在城市经济发展与生态环境平衡之间 具有重要润滑作用,对给排水、防洪防汛、农田灌溉方 面具有重要支撑作用。从地基施工到混凝土施工,每一 步都需要严格的把控关键施工节点,尤其隐蔽工程验 收,这使得它有自身的技术特点和施工作业要求。伴随 着材料、理论、审美的不断推进,施工技术管理等都有 了新的不断的变化。探讨分析城市水利水电建筑基础设 施施工技术并提出展望,对进一步推动行业发展具有深 远意义。

1 水利水电工程施工特点

1.1 地基处理

一般情况下,水利水电工程涉及单体建筑体量较大,荷载方面常需要考虑自重、水压冲击、以及其他荷载。如若马虎处理以上因素,轻则造成不均匀沉降,重则产生滑坡、倾倒等结构事故。例如大坝,其基础需具备足够强度与稳定性,以承载坝体重量和水压。不同地质条件需要区别对待,不能一概而论。如软土地基、岩石地基等,需针对性处理,软土地基可能需采用排水固结、深层搅拌等方法增强。岩石地基则要确保岩石完整性,对裂隙、断层进行灌浆处理。

1.2 施工环境

水利水电工程多建于江河、峡谷等自然环境中。施工现场常面临地形起伏大、交通不便等难题。同时,水文条件复杂,河流流量、水位随季节变化,可能遭遇洪水、泥石流等自然灾害。施工场地周边生态环境敏感,

工程建设需兼顾生态保护。

1.3 施工技术

水利水电工程涉及多种专业技术领域。从基础处理 到主体结构施工,从金属结构安装到机电设备调试,每 个环节都需精湛技术。地基处理技术有灌浆、防渗墙、 桩基础等多种类型;混凝土施工包含原材料选择、配合 比设计、浇筑与养护等复杂流程;土石坝填筑要把控土 石料开采、运输、压实等关键要点。

1.4 施工时段

水利水电工程受季节影响显著。河流丰枯水期交替,对工程施工安排影响巨大。在枯水期,水位低、流量小,利于基础施工、围堰修筑等作业,可降低施工难度与成本。而在丰水期,水位上升、水流湍急,不仅增加施工安全风险,还可能导致部分施工暂停。例如大坝混凝土浇筑,若在高温季节施工,需采取温控措施防止混凝土开裂;在雨季,要做好防雨、排水工作,避免积水影响施工质量[1]。

2 城市水利水电建筑基础设施施工技术

2.1 地基处理技术

2.1.1 灌浆技术

灌浆技术在城市水利水电建筑地基处理中应用广泛。其原理是通过钻孔将配置好的浆液注入地基土的孔隙、裂隙等缺陷部位。浆液在压力作用下扩散、填充并胶结,从而提高地基的强度、稳定性与防渗性能。对于岩石地基,可有效封堵裂隙,增强岩石整体性;在砂土地基中,能改善砂土的密实度与抗渗性。操作时,先根据地质勘察确定钻孔位置与深度,选用合适的灌浆材

料,如水泥浆、化学浆等。

2.1.2 混凝土防渗墙技术

混凝土防渗墙技术是解决水利水电工程地基防渗问 题的重要手段。它通过专用设备在地基中建造连续的混凝土墙体,截断地下水渗流通道。在松散透水地基,如冲积层、砂卵砾石层等地基处理中效果显著。施工时,先使用抓斗、冲击钻等设备进行槽段开挖,为保证槽壁稳定,常采用泥浆护壁。槽段成型后,下设钢筋笼,再通过导管法进行混凝土浇筑,使各槽段连接形成完整防渗墙。

2.1.3 桩基础技术

桩基础技术常常用于提高软弱地基的承载能力。它能够将建筑物的荷载通过桩传递到深部坚实土层或岩层。在城市水利水电工程中,当浅层地基土无法满足工程对地基承载力和变形要求时,桩基础就成为理想选择。根据施工方法的不同,桩基础可分为灌注桩和预制桩。灌注桩是在施工现场钻孔后灌注混凝土而成桩,可根据地质条件灵活调整桩径、桩长;预制桩则在工厂或现场预制完成后打入地基。

2.2 混凝土施工技术

2.2.1 混凝土制备

混凝土制备是水利水电工程质量的基础环节。原材料的选择至关重要,水泥需根据工程特点和环境条件选用合适品种与强度等级,确保其凝结时间、安定性等指标合格。骨料方面,粗细骨料的粒径、级配、含泥量等需严格控制,以保证混凝土和易性与强度。外加剂可改善混凝土性能,如减水剂能减少用水量、提高强度,引气剂增强抗冻性。制备时,先按设计配合比准确计量各材料,通过强制式搅拌机充分搅拌,保证物料均匀混合。搅拌时间、搅拌速度要严格把控,冬季施工需采取加热措施,夏季则要防止温度过高,确保制备出的混凝土满足工程要求,为后续施工奠定良好基础。

2.2.2 混凝土浇筑

混凝土浇筑是将制备好的混凝土按设计要求成型的关键步骤。在水利水电工程中,要根据结构特点和施工条件选择合适的浇筑方法,比如大体积混凝土常采用分层浇筑,以此控制温度裂缝。浇筑前,要清理模板和钢筋表面杂物,检查模板密封性与钢筋布置情况。浇筑时,利用泵送、溜槽等设备将混凝土输送至指定位置,控制好浇筑高度与速度,防止离析现象发生。振捣是保证混凝土密实的重要手段,采用插入式振捣器、平板振捣器等,按照一定间距和顺序进行振捣,使混凝土充满模板各个角落,排出其中的气泡。

2.2.3 混凝土养护

在水利水电工程中,由于混凝土结构长期受到水、温度等因素的影响,养护工作显得尤为重要。养护方法主要有洒水养护、覆盖养护、喷涂养护剂等。洒水养护通过保持混凝土表面湿润,促使水泥充分水化,养护时间根据水泥品种和环境温度确定,一般不少于7天,大体积混凝土养护期则更长。覆盖养护采用草帘、土工布等材料进行覆盖,减少水分蒸发,维持适宜的温湿度。喷涂养护剂可在混凝土表面形成保护膜,阻止水分散失^[2]。

2.3 土石坝施工技术

2.3.1 土石料开采与运输

土石料开采是土石坝施工质量的基础保障。开采前,需要进行细致的地质勘查,精准掌握土石料的储量、质量和分布情况。在土料开采过程中,推土机、铲运机凭借其灵活高效的特点,直接进行土方开挖作业;石料开采则借助爆破方式,科学设定装药量、炮孔间距等参数,产出粒径适配的石料,减少后续二次破碎工作。全程要严格控制物料混杂,规范卸料操作,保障优质足量的土石料及时供应,为填筑工作筑牢基础。

2.3.2 土石坝填筑

土石坝填筑是决定大坝稳固的关键环节。填筑工作 伊始,坝基处理必须做到位,要清除杂物、平整夯实, 确保坝基承载坚实。按照设计分区,将土石料分类放 置,从坝底开始逐层全筑。利用振动碾、气胎碾等压实 设备,通过调控压实遍数、行进速度等参数,使每层物 料紧密贴合。填筑期间,要实时监测土石料的含水量, 若含水量过高则进行翻晒散湿,过低则洒水增湿,维持 最优含水量,确保填筑体密实度达标,赋予大坝卓越的 稳定性,使其能够抵御长期荷载的考验。

2.3.3 土石坝防渗处理

土石坝防渗是保障大坝安全运营的核心任务。心墙 防渗方案通常选用粘性土、沥青混凝土等防渗性能良好 的材料,在坝体中央构建心墙,如同筑起一道屏障, 有效截断水流。斜墙防渗则是将防渗材料铺设在上游坡 面,直接应对渗水冲击。土工膜防渗利用其极低的渗透 特性,铺设在迎水面或坝基,形成密封防线。施工过程 中,要严格把控材料质量关,确保心墙、斜墙与坝体紧 密衔接,土工膜铺设平整,无褶皱、无破损,接缝严密 牢固。经过精细的防渗处理,能够大幅削减坝体渗漏, 杜绝管涌、流土等隐患,助力土石坝长期稳定运行,保 障水利设施的安全。

2.4 金属结构与机电设备安装技术

2.4.1 金属结构安装

金属结构安装在水利水电工程中起着支撑与防护等

关键作用。安装前,需要对各类金属构件,如闸门、拦 污栅等进行严格的质量检查,确保其尺寸精度和焊接 质量符合要求。安装时,先依据施工图纸精确测量放 线,确定安装位置。对于大型闸门安装,常常借助起重 设备,如门式起重机、塔式起重机等,将闸门吊运至预 定闸槽。安装过程中,要严格控制垂直度与水平度,通 过调整垫铁、楔铁等方式保证闸门安装精度,使其能够 在闸槽内升降自如。同时,要注重各构件之间的连接, 焊接部位需严格遵循焊接工艺规范,确保焊缝牢固、平 整,螺栓连接要控制好拧紧力矩,防止松动。

2.4.2 机电设备安装

机电设备安装是水利水电工程实现功能运转的核心环节。安装前,要对水轮机、发电机、变压器等设备进行全面检查,核对设备型号、规格,检查零部件的完整性。安装时,首先进行基础施工,根据设备底座尺寸浇筑混凝土基础,并预埋地脚螺栓,保证基础平整度与位置精度。设备吊运就位后,采用高精度测量仪器,如全站仪、水准仪等,校准设备的水平度、垂直度与同心度。在设备连接方面,电气连接要确保接线牢固、绝缘良好,管道连接则要保证密封严密、无泄漏。安装完毕后,要进行设备调试,包括空载试运行、负载试运行等,对设备运行参数进行监测与调整,使其达到设计性能指标,保障水利水电工程机电系统稳定、高效运行^[3]。

3 水利水电工程施工技术的发展趋势

3.1 信息化技术的应用

在水利水电工程施工中,信息化技术正发挥着愈发 关键的作用。借助 BIM 技术,能够构建出工程的三维 信息模型,直观展示工程的各个部分结构,提前发现设 计与施工过程中存在的冲突点,实现精准规划与协同作 业。传感器网络可以实时采集施工过程中的温度、应 力、位移等数据,经过数据分析处理后,为施工决策提 供科学依据,例如在大体积混凝土浇筑时监测温度变 化,有效预防裂缝产生。

3.2 绿色施工技术的发展

随着环保理念深入人心,绿色施工技术成为水利水 电工程发展的必然趋势。在施工材料方面,更多地选用 可回收、低能耗的新型材料,以此减少资源浪费与环境 破坏。例如,使用再生骨料制备混凝土,降低天然骨料 的开采量。施工过程中,优化施工工艺以降低能耗,比如采用节能型施工设备,合理安排施工顺序,减少设备空转时间。同时,注重生态保护,通过建设生态护坡、鱼类洄游通道等措施,降低工程对周边生态系统的影响。绿色施工技术不仅契合可持续发展理念,还能提升工程的综合效益,从长远角度保障水利水电工程与生态环境和谐共生。

3.3 智能化施工设备的研发与应用

智能化施工设备的兴起,正深刻变革着水利水电工程施工模式。智能挖掘机、装载机等设备配备先进的传感与控制系统,可实现自动挖掘、装载与运输作业,精准控制作业量,减少人工操作误差,大幅提高施工效率。智能混凝土搅拌与浇筑设备能够根据设定参数,自动完成配料、搅拌与浇筑流程,保障混凝土质量稳定。智能化施工设备的广泛应用,将有效缓解水利水电工程施工中劳动力短缺的问题,提升施工的安全性与可靠性,助力行业实现高质量发展^[4]。

结束语

城市水利水电建筑基础设施施工技术涉及多方面。 地基处理技术筑牢工程根基,混凝土施工技术确保结构 稳固,土石坝施工技术实现蓄水防洪功能,金属结构与 机电设备安装技术赋予工程运行动力^{[5] [6]}。当前,信息 化、绿色及智能化技术为行业发展注入新活力,需要准 确掌握合理应用。

参考文献

[1]杨林,唐成方.试析水利水电建筑工程中的基础灌浆 施工技术[J].珠江水运, 2020, (23): 188-189.

[2]杨自刚.水利水电建筑工程中的基础灌浆施工技术研究[J].中小企业管理与科技(下旬刊), 2020, (06): 149-150.

[3]李洋华.试析水利水电建筑工程中的基础灌浆施工技术[J].建材与装饰, 2020, (10): 129-130.

[4]高歌.解析在水利水电建筑工程中的基础灌浆施工技术[J].建材与装饰, 2020, (24): 310-311.

[5]王振鹏.城市水利水电建筑基础设施施工技术浅析 [J].电脑校园,20241(1):61-62.

[6]关功政,高静.浅谈水利水电工程管理中存在的问题 及对策[J].建材与装饰,2020(15):173,175.