分析房屋建筑结构地基基础工程施工控制技术

孙雅雯

中化地质矿山总局河南地质局 河南 郑州 450011

摘 要:房屋建筑结构是人们居住和生活的主要场所,其安全性和稳定性直接关系到人们的生命财产安全。地基基础工程作为房屋建筑结构的重要组成部分,其施工质量对于整个建筑物的安全和使用寿命具有至关重要的作用。因此,如何对房屋建筑结构地基基础工程施工进行有效的控制,成为了当前建筑领域研究的热点问题之一。

关键词:房屋建筑结构;地基基础工程;施工控制技术

引言:随着社会经济的发展和城市化进程的加速,房屋建筑工程的施工过程也变得越来越复杂,甚至出现过很多安全事故。因此,如何有效地实现地基基础工程施工控制技术,提高施工质量,确保施工安全,成为当前建筑工程领域一个重要的研究课题。本文将从基础概念、施工控制技术以及质量安全控制等方面,探讨地基基础工程施工控制技术的应用。

1 地基基础工程的基础概念

房屋建筑结构地基基础工程是整个建筑工程的核 心,它的质量直接关系到整个建筑的安全性和耐久性。 下面将介绍地基基础工程的一些基本概念。首先,地基 是指建筑物底部与地基土壤之间的接触面。而基础则是 指建筑物底部传递荷载的构件,通常是一道埋在土壤中 的混凝土或钢筋混凝土板。地基基础工程的设计和施工 必须根据建筑物的负荷和地基条件进行定制化,以确保 建筑物的安全和稳定。地基土壤对于房屋建筑结构地基 基础工程具有重要意义。土壤承受着建筑物的负荷,因 此其性质对于地基的稳定性和沉降大小有很大影响。在 施工过程中,需要对土壤进行勘测和分析,以确定其承 载力和稳定性。常见的勘测方法有钻探和地球物理勘测 等。建筑物负荷对于地基基础工程的设计和施工也至关 重要。建筑物负荷包括垂直负荷和水平负荷。垂直负荷 是指建筑物自重和楼层负载等垂直方向上的负荷, 水平 负荷则是指风力和地震等水平方向上的负荷[1]。地基基础 工程的设计和施工需要根据建筑物的负荷进行定制化, 以确保地基的稳定性和沉降大小在可接受范围内。地基 基础工程施工方法有很多种,其中常见的包括桩基础、 条形基础、箱形基础等。桩基础是将桩柱打入土壤中, 以传递建筑物负荷的一种基础形式。条形基础和箱形基 础则是将混凝土或钢筋混凝土板埋入土壤中, 以传递建 筑物负荷的基础形式。不同的施工方法适用于不同的土 壤条件和建筑物负荷, 因此在选择施工方法时需要综合

考虑各种因素。

2 房屋建筑结构地基基础工程施工控制重要性

房屋建筑结构地基基础工程是整个建筑工程的核心 组成部分, 其施工质量直接影响着建筑物的安全性和稳 定性。因此, 在地基基础工程施工过程中, 采用科学的 控制技术是非常重要的。首先, 地基基础工程作为整个 建筑物的支撑结构, 其质量直接关系着整个建筑物的安 全和使用寿命。如果地基基础工程施工质量不达标,可 能会导致建筑物出现倾斜、沉降、裂缝等严重问题,从 而引发安全隐患。因此,严格控制地基基础工程的施工 质量,是保障建筑物安全和稳定的前提条件。其次,房 屋建筑结构地基基础工程施工控制技术的采用,可以大 大提高施工效率和施工质量。例如, 在地基土层处理过 程中,采用科学的挤密处理技术,可以有效地增加地基 土层的承载力和稳定性,从而缩短施工周期和提高施工 质量。此外,在地基基础工程测量控制方面,采用精密 的仪器和高超的技术手段,可以确保各项参数的准确 性,从而避免施工过程中的误差累积和风险隐患[2]。最 后,房屋建筑结构地基基础工程施工控制技术的采用, 也可以为建筑企业带来很多实际的经济效益。一方面, 科学的控制技术可以提高施工效率和施工质量,从而缩 短施工周期和降低成本;另一方面,采用科学的控制技 术也可以提高建筑企业的形象和声誉,从而增加市场份 额和提升竞争力。

3 房屋建筑结构地基基础工程施工特点

随着城市化进程的加速,房屋建筑结构成为城市发展的重要基础。而地基基础工程作为房屋建筑结构的重要组成部分,其施工特点备受关注。本文将从施工难度、施工复杂性、施工质量重要性等方面,对房屋建筑结构地基基础工程施工特点进行分析。首先,地基基础工程施工难度大,需要高精度的施工工艺和严格的质量控制。由于地基基础工程是房屋建筑的根基,其施工难

度大、工期长、成本高。同时, 地基基础工程承担着整 个建筑物的荷载, 其施工质量对建筑物的安全性至关重 要。因此,在施工过程中需要采用高精度的施工工艺和 严格的质量控制,确保工程施工质量达到标准要求。其 次, 地基基础工程施工复杂性高, 需要丰富的施工经验 和专业的技术团队。地基基础工程施工过程中,需要面 对复杂的地质条件和多样的环境因素[3]。例如,在不同 地质条件下,需要采用不同的基础形式和施工方法。此 外, 地基基础工程施工过程中还需要考虑地下水、土壤 含水量、土壤密度等因素的影响。因此,需要具有丰富 的施工经验和专业的技术团队进行工程施工方案的设计 和施工过程的掌控。最后, 地基基础工程的施工质量对 建筑物的安全性至关重要,需要严格的验收标准和维保 制度。由于地基基础工程是房屋建筑的根基,其施工质 量对建筑物的安全性具有决定性的影响。因此, 在地基 基础工程施工过程中需要遵循严格的施工规范和验收标 准,确保工程施工质量达到标准要求。此外,为了保障 建筑物的长期安全使用,还需要建立完善的维保制度, 对地基基础工程进行定期检查和维护。

4 房屋建筑施工中地基基础工程施工控制技术分析

4.1 前期勘查控制技术

在房屋建筑施工中, 地基基础工程施工是整个建筑 工程的关键环节之一。为了确保地基基础工程的施工质 量,施工前期勘查控制技术至关重要。首先,在施工 前需要对土壤进行勘测和分析,以确定其承载力和稳定 性。常用的勘测方法包括钻探、地球物理勘测等。通过 钻探, 可以获取土壤的样本, 分析土壤的性质, 如承载 力、内摩擦角、压缩模量等。地球物理勘测则通过物探 仪器对土壤进行测量,以确定土壤的分布特点和性质。 其次,为了评价土壤的承载力和稳定性,需要对其进行 室内土工试验和现场原位试验。室内土工试验包括土壤 压缩试验、土壤抗剪强度试验等,以确定土壤在各种荷 载条件下的力学特性。现场原位试验则包括静力触探、 动力触探等试验, 以在现场对土壤进行测试和分析。根 据土壤的勘测和试验结果,可以确定地基的承载力和稳 定性,以及建筑物可能产生的沉降大小。如果土壤的承 载力和稳定性不足,需要通过地基处理来提高其性能。 目前常用的地基处理方法包括换填法、排水固结法、强 夯法、深层搅拌法等。在地基处理过程中,需要严格控 制处理方法和处理工艺,确保地基处理的施工质量。同 时,在地基处理完成后,需要进行地基检测和验收。地 基检测包括地基承载力和沉降量检测等, 以确定地基处 理的效果和施工质量。

4.2 预应力管桩地基处理技术

在房屋建筑施工中, 地基基础工程施工是整个建筑 工程的核心环节之一。预应力管桩地基处理技术是近年 来广泛应用的一种新型地基处理技术,具有许多优点, 如工期短、成本低、适应性强等。本文将介绍预应力管 桩地基处理技术的原理、适用范围、施工步骤和注意事 项等,并探讨该技术的应用前景和发展方向。预应力管 桩地基处理技术是将管桩沉入土壤中,利用管桩与土壤 之间的摩擦力和咬合力来提高地基承载力的一种方法。 该技术适用于各种土壤条件,包括软土地基、湿陷性黄 土地基等[4]。在施工前,需要进行地基勘探,确定土壤 的性质和承载力等指标。然后进行设计,包括确定桩的 直径、长度、间距等参数,以及确定桩的布置方式和数 量等。在预应力管桩地基处理技术的施工过程中,首先 需要进行静压沉桩。该方法利用压桩机的自重和附加重 量,通过液压系统将管桩压入土壤中。在压桩过程中, 需要注意压桩机的压力和桩的垂直度。其次需要进行振 动沉桩。该方法通过在桩顶加入振动器, 使桩沉入土壤 中。在振动沉桩过程中,需要注意振动力和桩的垂直 度。最后需要进行锤击沉桩。该方法通过锤击将桩打入 土壤中。在锤击沉桩过程中,需要注意锤击力和桩的垂 直度。预应力管桩地基处理技术具有许多优点。首先, 该技术可以提高地基的承载力, 使建筑物更加稳定和安 全。其次,该技术的工期短、成本低,可以降低建筑成 本,提高经济效益。最后,该技术的适应性较强,适用 于各种土壤条件和建筑物负荷。预应力管桩地基处理技 术的应用前景和发展方向非常广阔。随着城市化进程的 不断推进和人口的不断增长, 对房屋建筑的需求将不断 增加,对地基处理技术的要求也将不断提高。预应力管 桩地基处理技术作为一种新型的地基处理技术, 具有很 大的发展潜力。未来可以进一步加强研究,探索该技术 的更广泛应用领域和优化方法,提高技术的效率和可靠 性,为房屋建筑施工提供更加安全、可靠、经济的地基 处理方案。

4.3 BIM技术的应用

随着科技的不断进步和发展,BIM技术(建筑信息模型)在地基基础工程施工中的应用越来越广泛。BIM技术可以提供全面的、可交互的三维模型,帮助工程师和建筑师更好地理解和分析建筑信息,从而提高地基基础工程的施工效率和安全性。首先,BIM技术可以为工程师提供更精确的地质勘查数据和土壤性质分析。通过地质勘查和土壤性质分析,可以清楚地了解土壤的承载力、压缩模量等重要参数,从而更好地设计地基基础工程。同

时,BIM技术可以创建地质模型,直观地显示土壤的分布 和特性,为工程师提供更全面的地质信息。其次,BIM技 术可以提供工程师和建筑师交互式的三维设计模型,更 好地展示建筑的信息。通过BIM技术的可视化功能,可以 更加清晰地了解地基基础工程的细节和要求, 从而更好 地理解和分析建筑信息。同时, BIM技术可以提供交互 式的设计模型,允许工程师和建筑师在虚拟环境中进行 模拟和分析, 从而更好地优化和完善地基基础工程的设 计。再次, BIM技术可以为工程师提供更准确的施工规划 和进度安排。通过BIM技术的模拟功能,可以预测地基基 础工程的风险和挑战, 从而更好地制定施工规划和进度 安排。同时, BIM技术可以与施工设备和进度管理系统集 成,提供全面的、可交互的施工管理方案,从而更好地 执行和管理地基基础工程的施工过程^[5]。总之,BIM技术 在地基基础工程施工中的应用非常广泛,可以提高施工 效率和安全性,降低风险和成本。通过BIM技术的地质勘 查、三维设计、施工模拟等功能,工程师和建筑师可以 更好地理解和分析建筑信息, 从而为地基基础工程的设 计和施工提供更加全面、可交互的解决方案。未来,随 着BIM技术的不断发展和完善,它在地基基础工程施工中 的应用也将越来越普遍和重要。

4.4 质量安全控制

地基基础工程是房屋建筑施工中的重要环节,其质量安全控制直接关系到整个建筑的安全和稳定性。因此,在地基基础工程施工中,必须加强质量安全控制,确保工程施工符合规范要求,提高工程的可靠性和耐用性。首先,在地基基础工程施工前,应进行全面的安全风险评估,找出工程中可能存在的安全风险和隐患,制定相应的预防措施。同时,应建立健全的质量安全管理体系和技术交底制度,明确各环节的责任和要求,确保工程施工过程中的质量安全控制得到有效落实。其次,在地基基础工程施工过程中,应对关键环节进行重点监控和检验,确保符合设计要求和规范标准。例如,对于

桩基施工中的桩位、桩长、桩径等参数,应进行严格的 控制和检测,确保桩基承载力和稳定性达到设计要求。 对于边坡和基坑施工中的支护方案和监测数据,应进行 仔细的核对和分析,确保施工过程中的安全风险得到有 效控制。再次, 在地基基础工程施工过程中, 应加强安 全生产教育和技术培训,提高作业人员的安全意识和操 作技能。同时,应加强安全管理和应急预案的制定和实 施,确保在突发事件中能够及时采取有效措施,防止事 故扩大和损失增加。最后,对于地基基础工程的验收和 维修阶段,应加强质量安全控制的持续监管和检查。对 于发现的隐患和问题,应进行及时整改和处理,确保工 程的可靠性和耐用性得到保障。总之, 地基基础工程质 量安全控制是工程施工中的重要环节之一,关系到整个 建筑的安全和稳定性。通过全面的安全风险评估、重点 环节监控、安全生产教育和培训、安全管理和应急预案 制定等措施,可以有效地加强质量安全管理,提高工程 施工的质量和安全性。

结语

房屋建筑结构地基基础工程施工控制技术的采用是 非常重要的。只有通过科学的控制技术,才能够确保地 基基础工程的施工质量、施工效率和经济效益,从而保 障建筑物的使用安全和寿命。

参考文献

[1]魏姗.房屋建筑结构地基基础工程施工控制技术的应用研究[J].居舍,2019(05):67.

[2]李俊.房屋建筑施工中地基基础工程的施工技术处理措施[J].砖瓦,2021(02):166-167.

[3]魏念玉.房屋建筑结构地基基础工程施工控制技术研究[J].建材与装饰,2020(05):39-40.

[4]赵加全,杨高维.房屋建筑工程地基基础工程施工控制技术分析[J].居舍,2021(32):96-98.

[5]孙海进.房屋建筑地基基础工程的施工技术要点探 究[J].工程技术研究, 2020, 5(3): 47-48.