隧道工程开挖支护的施工要点分析

黄晓东 赵庆华 中国水利水电第十一工程局有限公司 河南 郑州 450100

摘 要:隧道工程开挖支护施工是确保隧道安全、稳定、高效建设的关键环节。本文详细分析了隧道工程开挖支护的施工要点,包括科学合理的开挖方法选择、喷射混凝土施工、锚杆支护以及钢筋网支护等。同时,提出了提升隧道工程开挖支护施工有效性的措施,如加强前期规划与地质勘察、引入先进技术与设备、强化施工管理与质量控制等。这些要点和措施对于保障隧道工程质量和施工安全具有重要意义。

关键词:隧道工程; 开挖支护; 施工要点

引言:隧道工程作为交通建设不可或缺的关键环节,其开挖支护施工的重要性不言而喻。它直接关系到整个工程的安全性、质量稳定性以及施工进度的顺利推进。随着现代科技的飞速发展和工程复杂性的日益提升,隧道开挖支护施工的技术要求也愈发严格,其重要性愈发凸显,成为确保隧道工程顺利进行和长期安全使用的坚实保障。

1 隧道工程施工的重要性

隧道工程作为现代交通建设的重要组成部分, 其施 工的重要性不言而喻。第一, 隧道工程是连接不同地理 区域、促进经济发展的关键纽带。在山区、河流等自 然屏障面前, 传统的道路建设往往面临巨大挑战, 而隧 道工程则能够巧妙地穿越这些障碍, 实现两地之间的快 速、安全通行,极大地缩短了交通距离,提升了运输效 率。这不仅有助于促进区域间的经济交流和贸易往来, 还能够带动沿线地区的产业发展和人口流动,推动经济 的全面繁荣。第二,隧道工程对于提高道路通行能力和 安全性具有显著作用。在交通拥堵日益严重的今天,隧 道工程能够有效缓解地面交通压力,减少交通事故的发 生。通过科学合理的设计和施工,隧道内部可以实现车 辆的分流和限速,提高道路的整体通行能力[1]。同时,隧 道工程还能够减少恶劣天气对交通的影响,如雨雪、大 雾等天气条件下,隧道内的道路条件相对较好,能够保 障车辆的安全通行。隧道工程施工的重要性不仅体现在 促进经济发展、还具有提高道路通行能力和安全性的意 义。因此,在隧道工程的施工过程中,必须高度重视工 程质量、安全和环保等方面的问题,确保工程的顺利进 行和圆满完成。

2 隧道工程开挖支护的施工要点

2.1 科学合理的开挖方法选择

隧道工程开挖支护的施工要点中, 科学合理的开挖

方法选择是至关重要的一个环节, 其深度体现在对地质 条件、工程要求及施工效率的全面考量上。(1)开挖 方法的选择必须基于详尽的地质勘察数据。地质勘察不 仅要揭示地层的岩性、结构、构造等基本信息,还需深 入分析地下水的分布、流动规律及其对开挖稳定性的影 响。通过钻探、物探等多种手段,获取准确的地质信 息,为开挖方法的选择提供科学依据。(2)开挖方法 的选择需充分考虑工程的具体要求。隧道工程的断面尺 寸、埋深、用途等因素都会对开挖方法的选择产生影 响。例如,对于大断面隧道,可能需要采用分台阶开挖 或环形开挖留核心土法等,以确保开挖面的稳定性和施 工效率。同时,还需考虑隧道的长期稳定性和后期维护 的便利性。(3)开挖方法的选择还需兼顾施工效率和经 济性。不同开挖方法所需的设备、人力、时间等资源投 人不同,对施工进度和成本有着直接影响^[2]。因此,在 选择开挖方法时,需综合考虑各种因素,寻求最佳平衡 点。例如,在地质条件较好的情况下,可采用全断面开 挖法,以充分发挥机械效率,提高施工进度;而在地质 条件复杂或围岩稳定性较差的地段,则需采用更为灵活 的开挖方法,如台阶开挖法或分部开挖法等,以确保施 工安全和质量。(4) 开挖方法的选择还需考虑施工过程 中的动态调整。由于隧道工程的地质条件复杂多变,开 挖过程中可能会遇到各种不可预见的情况。因此, 在施 工过程中, 需根据地质条件的变化和监测数据的反馈, 及时调整开挖方法和支护措施,确保施工的安全性和稳 定性。隧道工程开挖方法选择考量因素如下表1。

2.2 喷射混凝土

在隧道工程开挖支护施工中,支护工程的重要性不言而喻,其对整个隧道的施工质量和施工安全性起着至关重要的影响。为了切实提高支护质量,喷射混凝土无疑是一种极为重要的支护措施。喷射混凝土主要是指向

隧道的隧道壁和岩体的位置喷射混凝土,一般每立方米喷射混凝土中水泥用量约为400千克左右。通过混凝土与岩体紧密结合在一起,可极大地提高隧道的抗压性和粘合性,保证隧道不发生坍塌。例如,经过喷射混凝土支护后,隧道的抗压强度可提高至20兆帕以上。通过混凝

土的支撑,能够显著提高隧道的整体强度,满足隧道的 支护需要。在喷射混凝土施工中,需要根据岩石的类型 和岩石的特点合理选择,如对于硬度较大的花岗岩,喷 射厚度可适当增加至15厘米左右。

表1 隧道工程开挖方法选择考量因素

考量因素	详细描述	示例数据	
地质勘察数据	-岩性:如砂岩、页岩等 -结构:断层、褶皱等 -地下水:分布、流动规律	-钻探揭示:砂岩层,厚度50m -物探:地下水丰富,流动速度快	
工程具体要求	-断面尺寸:如宽度、高度 -埋深:地表至隧道顶部的距离 -用途:交通、水利等	-断面尺寸: 宽10m, 高8m -埋深: 100m -用途: 交通隧道	
施工效率与经 济性	-设备需求:挖掘机、装载机等 -人力需求:工人数量、技能水平 -时间成本:工期要求	-设备:挖掘机2台,装载机1台 -人力: 50名工人 -工期: 12个月	
开挖方法选择	-全断面开挖法:适用于地质条件好,进度要求高的地段 -分台阶开挖法:适用于大断面,需保持开挖面稳定的隧道 -环形开挖留核心土法:适用于地质条件复杂,需控制地表沉 降的隧道 -分部开挖法:适用于围岩稳定性差,需逐步开挖支护的地段	-地质条件好:全断面开挖法 -大断面隧道:分台阶开挖法 -地质复杂:环形开挖留核心土法 -围岩稳定性差:分部开挖法	
施工动态调整	-地质条件变化:如遇到断层、地下水突增等 -监测数据反馈:地表沉降、开挖面稳定性等	-遇到断层:调整开挖方法,加强支护 -地下水突增:采取排水措施,调整开挖进度 -地表沉降过大:加强监测,调整支护参数	

2.3 锚杆支护

在开挖支护施工中,锚杆支护作为一种关键的支护方式,发挥着举足轻重的作用。在实际施工中,能够通过锚杆支护的方式对隧道的岩土层进行高效加固。例如,在一般的隧道工程中,每延米隧道可能需要布置5到10根锚杆,锚杆长度通常在2米到5米不等。这种方式能有效地防止岩土的结构变形,极大地降低岩土崩塌的风险。锚杆支护的方式对于松动区的隧道内岩石有着至关重要的作用,当岩石松动较大或者岩石存在较大压力时,比如岩石压力达到每平方米10吨以上,可以采取锚杆支护的方式予以有力支撑。锚杆支护能够从岩石的内部去改变岩石的受力结构,使岩石的稳定性更强。经过锚杆支护后,岩石的抗剪强度可提高30%以上,能够通过锚杆支护的方式将岩石牢固固定住,避免岩石发生崩塌。

2.4 钢筋网支护

除了上述支护方式之外,钢筋网支护也是一种不可忽视的重要支护方式。在岩石尺寸较小、岩石崩落的可能性较大的隧道中,例如岩石粒径普遍在10厘米以下且岩石崩落概率超过30%的隧道,利用钢筋网支护能够起到良好的支护效果。一般情况下,钢筋网可采用直径为6毫米到10毫米的钢筋编制而成,网格尺寸在10厘米×10厘米到20厘米×20厘米之间。在钢筋网的支护过程当中,可以进行全断面的网络布设,既能够提高挂网的质量,每平方米的挂网重量可达到50千克左右,同时也能够保证挂网的密度,使挂网的覆盖率达到90%以上。这样能够提高钢筋网支护的效果,满足隧道的支护要求。利用钢筋网支护能够保证隧道壁内的岩石不发生异常崩塌,对提高隧道支护效果具有重要作用。钢筋网支护相关参数如下表2。

表2 钢筋网支护相关参数

支护方式	适用条件	钢筋规格	网格尺寸	布设方式	挂网质量	挂网密度	支护效果
钢筋网 支护	岩石尺寸小, 崩落概率大 (岩石粒径 < 10cm, 崩落概率 > 30%)	直径6-10mm 钢筋	10cm×10cm- 20cm×20cm	全断面网络 布设	50kg/m²左右	覆盖率>90%	防止岩石崩 塌,提高支 护效果

3 提升隧道工程开挖支护施工有效性的措施

3.1 加强前期规划与地质勘察

地质勘察不应仅限于表面的岩层分布和地下水情 况,而应深入到地质构造、断层、节理、岩性变化等细 微层面。通过高密度钻探、三维地震勘探、电法勘探等 多种技术手段的综合应用, 获取详尽的地质数据, 并借 助先进的数据处理和分析软件,构建出精确的地质模 型。这样的模型能够真实反映隧道穿越区域的地质情 况,为施工方案的制定提供可靠依据。基于地质勘察结 果,制定科学合理的施工方案至关重要。施工方案应充 分考虑地质条件、开挖方法、支护结构、施工顺序、工 期安排等多个因素,通过数值模拟、专家论证等方式, 对方案进行反复优化。特别是在开挖方法的选择上,需 根据地质勘察结果,结合工程实际情况,选择最适合的 开挖方法,如全断面开挖、台阶开挖、分部开挖等,以 确保开挖过程中的稳定性和安全性。除此之外,前期规 划还需考虑施工过程中的风险管理。通过对地质勘察结 果的分析, 识别出潜在的施工风险, 如坍塌、突水、涌 泥等,并制定相应的预防和应对措施。同时,建立完善 的风险监控体系,对施工过程中可能出现的风险进行实 时监测和预警,确保在风险发生时能够迅速响应,有效 控制事态发展。最后,前期规划与地质勘察的加强还需 体现在施工队伍的建设上[3]。施工队伍应具备丰富的隧道 施工经验和专业知识, 能够准确理解地质勘察结果和施 工方案,并在施工过程中严格执行。

3.2 引入先进技术与设备

在隧道工程开挖支护施工中,引入先进技术与设备 是提升施工效率、保障施工质量和安全性的关键措施。 (1) 先进技术的应用能够显著提升施工精度和效率。例 如,利用BIM(建筑信息模型)技术进行三维建模和虚拟 施工,可以精确模拟隧道开挖和支护的全过程,提前发 现并解决潜在问题,优化施工方案。同时,结合GPS、激 光测距等高精度测量技术,可以确保开挖面的平整度和 轮廓线的准确性,减少超挖和欠挖现象,提高施工质量 和材料利用率。(2)先进设备的引入为施工提供了强大 的技术支持。自动化掘进机、多功能支护台车等现代化 施工设备的应用,不仅减轻了施工人员的劳动强度,还 大大提高了施工效率。这些设备通常配备有智能控制系 统,能够实时监测施工参数,自动调整工作状态,确保 施工过程的稳定性和安全性。(3)先进技术与设备的融 合应用促进了施工管理的创新。通过引入物联网、大数 据等信息技术,可以实现对施工现场的实时监控和数据 分析,为施工管理提供科学依据。例如,通过监测隧道 内的应力、变形等参数,可以及时发现并预警潜在的安全风险;通过分析施工数据,可以优化施工资源配置,提高施工效率。(4)引入先进技术与设备并不意味着完全摒弃传统施工方法。在实际施工中,应根据工程实际情况和技术设备的适用性,灵活选择施工方法和设备,实现传统与现代技术的有机结合。

3.3 强化施工管理与质量控制

在隧道工程开挖支护施工中,强化施工管理与质量 控制体现在对施工全过程的精细化管控、对质量标准的 严格执行以及对问题隐患的及时纠正上。施工管理的强 化要求建立科学、系统的管理体系, 明确各级管理人员 的职责和权限,确保施工活动的有序进行。通过制定详 细的施工计划、进度安排和质量标准,为施工提供明确 的指导和依据。在施工过程中,应严格执行国家相关标 准和规范, 对原材料、半成品、成品等进行严格的质量 检验和验收。通过设立质量控制点、开展质量检查和质 量评定等方式,对施工质量进行全面、细致的监控。对 于发现的质量问题,应及时采取纠正措施,防止问题扩 大化,确保施工质量符合设计要求和相关标准。当然, 强化施工管理与质量控制还需注重施工过程的持续改 进。通过收集、整理和分析施工过程中的数据和信息, 发现施工中的薄弱环节和潜在问题,提出改进措施并付 诸实施。同时,鼓励施工人员积极参与质量管理和技术 创新活动,不断提升施工水平和质量意识。强化施工管 理与质量控制还需加强安全管理和环境保护。安全是施 工的前提和基础,必须始终放在首位。通过加强安全教 育、完善安全设施、落实安全责任等措施,确保施工过 程中的人员和设备安全。

结语

总之,隧道工程开挖支护的施工要点涵盖了从前期 规划到后期管理的全方位要求。通过加强地质勘察、引 人先进技术、强化施工管理以及注重质量控制与安全管 理,可以有效提升隧道工程的施工质量与效率。未来, 随着科技的不断进步和工程实践的深入,隧道工程开挖 支护的施工要点将继续得到优化和完善,为推动我国交 通基础设施的高质量发展贡献力量。

参考文献

[1]赵淑红.路桥隧道工程开挖支护的施工要点研究[J]. 绿色环保建材,2021(07):109-110.

[2]陶先泽.俄标隧道工程开挖支护施工的技术关键点分析[J].建筑技术开发,2021,48(04):34-36.

[3]李文华.关于路桥隧道工程的施工技术与质量控制探析[J].中华建设,2019(11):110-111.