路堑边坡支护在市政道路工程中的应用

杨忠庆

悉地(苏州)勘察设计顾问有限公司 广西 南宁 530000

摘 要:本文聚焦路堑边坡支护在市政道路工程中的应用。先剖析路堑边坡稳定性,阐述破坏形式及影响因素,如风化、碎落、滑坍、崩坍等破坏形式,以及边坡高度、岩土体性质、水文地质等因素。并探讨喷锚、锚索、土钉等典型支护技术应用,还阐述施工质量控制要点,包括施工过程监控、质量检验、安全风险防控及施工后效果评估与维护,旨在为市政道路路堑边坡支护提供全面理论与实践指导。

关键词: 市政道路工程; 路堑边坡支护; 稳定性

1 路堑边坡稳定性分析基础

1.1 路堑边坡破坏形式

路堑边坡的破坏形式多样,主要包括风化、碎落、 滑坍和崩坍四种。风化是指边坡岩土体在自然条件下逐 渐分解、破碎的过程,它会导致边坡表层岩土体的松散 和脱落。碎落则是边坡岩土体因风化、雨水冲刷等因素 而形成的小块脱落现象。滑坍是指边坡岩土体在重力作 用下,沿某一滑动面向下移动的过程,这通常与边坡的 土质、地下水状况及外部荷载等因素有关。崩坍则是边 坡岩土体在突发外力(如地震、强降雨等)作用下发生 的急剧崩塌现象,这种破坏形式往往具有突发性和破坏 性强的特点。在实际工程中,路堑边坡的破坏往往不是 单一形式出现,而是多种破坏形式相互作用、共同影响 的结果。因此,在进行边坡稳定性分析时,需要综合考 虑各种破坏形式的可能性及其相互作用机制。

1.2 影响路堑边坡稳定性因素

路堑边坡的稳定性受到多种因素的影响,这些因素 既包括边坡自身的地质条件,也包括外部环境因素。从 边坡自身条件来看,边坡的高度和倾角是影响稳定性的 关键因素。高度越高、倾角越大的边坡,其稳定性往往 越差。此外,岩土体的性质也是影响边坡稳定性的重要 因素,包括岩土体的强度、密度、透水性等。不同性质 的岩土体在受到外力作用时的响应不同,从而影响边坡 的稳定性。外部环境因素同样对路堑边坡的稳定性产生 重要影响。例如,水文地质条件的变化,特别是地下水 位的变化,会直接影响边坡岩土体的抗剪强度和滑动面 的摩擦力,进而影响边坡的稳定性。气候条件,如降 雨强度和持续时间,也会影响边坡岩土体的含水量和重 量,从而增加边坡发生滑动的风险。另外,施工方法、 地震作用以及人类活动等因素也可能对边坡的稳定性产 生影响。施工方法不当可能导致边坡岩土体的扰动和破 坏, 地震作用则可能引发边坡的急剧崩塌, 而人类活动 (如开挖、堆载等)也可能改变边坡的应力状态和破坏 模式。

2 路堑边坡支护施工工艺

2.1 施工准备

施工准备是路堑边坡支护工作的基础,包括现场勘察、设计方案制定、施工队伍组建、材料采购与检验、设备调试与检查等多个环节。现场勘察需全面了解边坡的地质条件、水文状况、周边环境等,为设计方案提供准确依据。设计方案应根据勘察结果,结合边坡的稳定性分析,明确支护形式、材料选择、施工顺序等关键要素。施工队伍应具备丰富的边坡支护施工经验,并接要素。施工队伍应具备丰富的边坡支护施工经验,并接要表。施工队伍应具备丰富的边坡支护施工经验,并接现设计要求进行,确保施工质量和安全。材料采购需严格按照设计要求进行,确保产工度,确保施工过程中设备的正常运行。在施工准备阶段,还需制定详细的施工计划和安全措施。施工计划应明确各阶段的工作任务、时间节点和责任人,确保施工有序进行。安全措施则需针对施工过程中可能出现的风险点,制定相应的预防措施和应急预案,确保施工安全。

2.2 基础施工

边坡修整需按照设计要求对边坡进行清理和整平,确保边坡的坡度、高度和形状符合支护要求。基础开挖则应根据设计图纸,确定开挖范围、深度和边坡的倾斜角度,同时需注意开挖过程中的安全防护措施。混凝土浇筑是基础施工的核心步骤,需严格按照设计要求进行配比、搅拌和浇筑。浇筑前应对基础坑进行清理和湿润,确保混凝土与基础的良好结合。浇筑过程中需注意混凝土的振捣和抹平,确保混凝土的密实度和表面平整度。浇筑完成后,还需对混凝土进行养护,确保其达到设计强度。

2.3 支护结构施工

支护结构施工是路堑边坡支护的主体部分,包括锚杆(索)安装、钢筋网片铺设、喷射混凝土等步骤。锚杆(索)安装需根据设计要求确定锚杆(索)的长度、直径和间距,同时需注意锚杆(索)的注浆工艺和注浆质量。钢筋网片铺设则需按照设计图纸进行,确保钢筋网片的规格、数量和搭接长度符合要求。喷射混凝土是支护结构施工的关键步骤之一,需严格控制混凝土的喷射厚度、强度和均匀性。喷射前应对钢筋网片进行清理和湿润,确保混凝土与钢筋网片的良好结合。喷射过程中需注意混凝土的喷射距离、角度和速度,以及喷射面的平整度和垂直度。喷射完成后,还需对混凝土进行养护,确保其达到设计强度^[2]。

2.4 排水系统施工

排水系统包括地表排水和地下排水两部分; 地表排水主要通过设置截水沟、排水沟等设施, 将边坡上方的雨水引流至边坡外侧, 减少雨水对边坡的冲刷作用。地下排水则需根据边坡的地质条件和水文状况, 设置排水孔、盲沟等设施, 将边坡内部的地下水排出, 降低地下水位, 减少水对边坡稳定性的影响。排水系统的施工需严格按照设计要求进行, 确保排水设施的尺寸、位置和数量符合要求。同时, 还需注意排水设施的维护和管理, 确保其长期有效运行。在施工过程中, 还需加强质量检查和验收工作, 确保排水系统的施工质量和效果满足设计要求。

3 典型边坡支护技术在市政道路工程中的应用

3.1 喷锚支护技术的应用

喷锚支护技术是喷射混凝土与锚杆相结合的支护方 式,在市政道路路堑边坡支护中应用广泛。其工作原理 是通过锚杆将不稳定的边坡岩土体与深部稳定的岩土体 连接起来,提供锚固力,限制岩土体的位移;同时,喷 射混凝土在边坡表面形成一层防护层,增强边坡的抗风 化和抗冲刷能力,防止岩土体进一步松动和剥落在实际 应用场景中, 喷锚支护技术适用于各类岩土体边坡, 尤 其是风化严重、节理裂隙发育的岩石边坡或土质较松散 的边坡。例如, 在城市山区的市政道路建设中, 遇到山 体岩石破碎、容易发生崩塌的路堑边坡时, 喷锚支护技 术能够发挥显著作用;施工流程方面,首先要对边坡进 行修整,清除坡面的松散土石和浮渣,保证坡面的平整 度。随后,按照设计要求钻孔,将锚杆插入孔中并进行 注浆, 使锚杆与岩土体紧密结合, 提供锚固力。紧接着 进行喷射混凝土作业,通过喷射设备将混凝土均匀地喷 射到坡面上,形成防护层。在喷射过程中,需控制好混 凝土的配合比、喷射压力和喷射厚度,以确保混凝土层的强度和防护效果。

3.2 锚索支护技术的应用

锚索支护技术利用高强度的锚索将边坡岩土体与稳 定的深部岩体或土体相连接,依靠锚索的拉力来抵抗边 坡土体的下滑力,从而维持边坡的稳定。锚索通常由高 强度的钢绞线组成,具有较高的抗拉强度,能够承受较 大的荷载; 此技术适用于高陡边坡以及对变形控制要求 较高的市政道路边坡工程。在一些城市的大型互通式立 交匝道建设中, 路堑边坡高度大、坡度陡, 且周边环境 复杂,对边坡的稳定性和变形控制要求极为严格,此时 锚索支护技术就成为理想选择。施工时,第一步是进行 钻孔作业, 钻孔深度和角度需严格按照设计要求执行, 以确保锚索能够准确锚固到稳定的岩土体中。钻孔完成 后,将预先制作好的锚索放入孔内,然后进行注浆,使 锚索与孔壁之间形成牢固的粘结。待注浆体达到一定强 度后,对锚索进行张拉锁定,施加设计拉力,从而发挥 锚索的支护作用。在整个施工过程中, 要对锚索的张拉 应力进行实时监测,确保其符合设计要求,同时注意保 护锚索不受损坏。

3.3 土钉支护技术的应用

土钉支护技术是在土体内设置一定长度和间距的土 钉,通过土钉与土体之间的摩擦力和粘结力,使土体形 成一个稳定的复合结构,提高土体的整体稳定性。土钉 一般采用钢筋制作,施工过程相对简单。土钉支护技术 在地下水位以上或经降水处理后的各类土体边坡中具有 良好的适用性,特别是对于较松散的砂土和粉土边坡。 在城市新区的市政道路建设中, 若遇到土质较为松散的 路堑边坡, 土钉支护技术能够有效地保证边坡的稳定, 且成本相对较低;施工过程中,首先在坡面上按设计间 距钻孔,将土钉钢筋插入孔中,然后进行注浆,使土钉 与土体紧密结合[3]。注浆完成后,在坡面上铺设钢筋网, 并喷射混凝土,形成土钉墙。钢筋网和喷射混凝土层能 够进一步增强土体的整体性和抗冲刷能力。在施工中, 要确保土钉的长度、间距以及注浆质量符合设计要求, 同时注意喷射混凝土的施工工艺,保证混凝土层的厚度 和强度。

4 路堑边坡支护施工质量控制

4.1 施工过程的监控与管理

在路堑边坡支护施工过程中,有效的监控与管理是保障施工质量的基础。首先,要建立完善的施工质量管理体系,明确各部门和人员的职责,确保施工过程中的各项工作都有专人负责。施工管理人员需每日对施工现

场进行巡查,检查施工人员是否按照设计方案和施工规范进行操作。例如,在锚杆、锚索钻孔作业时,要监督钻孔的位置、深度和角度是否符合设计要求;在喷射混凝土施工时,检查混凝土的配合比是否准确,喷射设备的运行状态是否正常。同时,对施工进度也要进行严格把控,制定详细的施工进度计划,并根据实际情况及时调整,避免因赶工而忽视质量问题。加强施工现场的材料管理,对进场的钢筋、水泥、砂石等原材料进行严格检验,确保材料质量符合设计标准,防止不合格材料用于工程建设。

4.2 支护结构的施工质量检验

对于锚杆和锚索,要进行抗拔力试验,通过专业的试验设备对一定数量的锚杆和锚索进行拉拔测试,检验其锚固力是否达到设计要求。在混凝土施工方面,对喷射混凝土和现浇混凝土(如挡土墙、格构梁等结构中的混凝土)要进行强度检验。现场制作混凝土试块,按照标准养护条件进行养护,达到规定龄期后进行抗压强度试验。对于钢筋工程,检查钢筋的品种、规格、数量是否符合设计,钢筋的焊接和绑扎质量是否达标,通过抽样检测钢筋的焊接接头强度、钢筋间距等指标来确保钢筋工程质量。对于土钉支护,除了检验土钉的抗拔力,还要检查土钉与土体的粘结质量,可采用现场抽样开挖检查的方式,观察土钉周围土体的粘结情况。对于抗滑桩,除了检验桩身混凝土强度,还需通过低应变检测等方法对桩身完整性进行检测,确保桩身无明显缺陷。

4.3 施工安全风险的防控

路堑边坡支护施工存在一定的安全风险,有效的防控措施至关重要。在施工现场设置明显的安全警示标志,对危险区域进行隔离,防止无关人员进入。对于高处作业,要求施工人员系好安全带,搭建稳固的脚手架,并定期对脚手架进行检查和维护。在进行爆破作业(如抗滑桩施工中可能涉及的岩石爆破)时,严格遵守爆破安全规程,提前做好爆破方案,确定合理的爆破参数,对爆破区域进行清场,设置警戒范围,确保人员和设备安全。加强对施工设备的安全管理,定期对钻机、起重机、喷射机等设备进行检查和维护,确保设备性能良好,防止因设备故障引发安全事故^[4]。同时,对施工人员进行安全教育培训,提高施工人员的安全意识和自我保护能力,使其熟悉施工过程中的安全操作规程和应急处理方法。制定应急预案,针对可能出现的边坡坍塌、

高处坠落、触电等事故,明确应急响应流程和救援措施,并定期组织演练,确保在事故发生时能够迅速、有效地进行救援。

4.4 边坡支护施工后的效果评估与维护

边坡支护施工完成后,需对其效果进行评估,以便 及时发现问题并采取措施。通过位移监测,利用全站 仪、水准仪等设备定期对边坡的水平位移和垂直位移进 行观测,分析位移数据的变化趋势,判断边坡是否处于 稳定状态。进行应力监测,在支护结构(如锚杆、锚 索、挡土墙等)中埋设应力传感器,监测结构内部的应 力变化,评估支护结构是否承受过大荷载。对地下水进 行监测,观察地下水位的变化情况,分析其对边坡稳定 性的影响。根据评估结果, 若发现边坡有变形趋势或支 护结构存在安全隐患,及时采取维护措施。对于轻微变 形的边坡,可通过调整排水系统,加强坡面防护等方式 进行处理; 对于较为严重的问题, 可能需要对支护结构 进行加固,如增加锚杆、锚索数量,对挡土墙进行补强 等。同时,定期对边坡支护结构进行外观检查,查看是 否有混凝土开裂、钢筋锈蚀、结构松动等情况,及时进 行修复和维护,以确保路堑边坡支护的长期有效性。

结束语

综上所述,路堑边坡支护在市政道路工程中扮演着至关重要的角色。通过合理的支护设计和严格的施工工艺控制,可以有效提升边坡的稳定性,确保市政道路工程的安全性和可靠性。未来,随着技术的进步和工程实践的不断积累,应持续优化边坡支护技术,提高施工效率和质量,为城市基础设施建设做出更大的贡献。同时,加强施工过程中的质量控制和风险防控,确保边坡支护工程的安全实施和长期有效。

参考文献

[1]张文昌.深路堑边坡开挖与支护施工探讨[J].绿色环保建材,2020,11(3):47-18.

[2]胡建军.铁路路堑边坡变形破坏特征及处治施工技术[J].工程建设与设计,2020,8(11):68-70.

[3]刘志明.延平西站土质深路堑边坡稳定性分析与加固措施研究[J].资源环境与工程,2021,5(12):215-216.

[4]陈世勇.市政道路路堑边坡支护施工分析[J].建筑技术开发, 2022, 49(08): 126-128.