建筑混凝土浇筑施工技术研究

王 悦 宁夏圣峰建筑工程有限公司 宁夏 银川 750000

摘 要:混凝土作为一种广泛应用于各类建筑工程中的复合材料,其施工技术对于保证工程质量至关重要。本文深入研究了混凝土浇筑施工技术的各个环节,包括混凝土的定义及特点、施工原料的选择与配比、施工技术要点及工艺,以及常见问题及预防措施。通过优化配合比、提高施工技术水平,可以有效提升混凝土结构的强度和耐久性,为建筑工程的安全和质量提供有力保障。

关键词: 混凝土施工; 浇筑技术; 原料配比; 预防措施

引言

混凝土施工技术因其显著的性能优势和效益优势, 在建筑工程中得到了广泛应用。随着 建筑工程规模的 不断扩大和复杂度的提高,对混凝土施工技术的要求也 越来越高。深入研究混凝土施工技术,优化施工流程, 提高施工质量,对于保障建筑工程的安全性和耐久性具 有重要意义。

1 混凝土施工理论

1.1 混凝土的定义及特点

混凝土,作为一种广泛应用于各类建筑工程中的复 合材料,其重要性不言而喻。它是由水泥、骨料(包 括砂、石等)、水以及根据需要添加的外加剂和掺合 料,经过一定比例混合、搅拌、成型、养护等工序而制 成的。混凝土因其独特的物理和化学性质,在建筑工程 中扮演着举足轻重的角色。混凝土的主要特点体现在其 体积较大、结构尺寸厚、钢筋布置密集等方面。这些特 点使得混凝土在承受巨大荷载时能够保持结构的整体性 和稳定性。由于混凝土中水泥用量较多, 浇筑时间较 长,工艺要求也相对较高,这进一步保证了混凝土结 构的强度和耐久性。然而,混凝土施工也面临着诸多 挑战。由于其体积大、结构复杂, 易受外部环境如温 度、湿度等因素的影响,容易产生温度裂痕等问题,这 对施工技术和质量控制提出了更高要求。温度裂痕是混 凝土施工中常见的问题之一。由于混凝土在浇筑和硬化 过程中会释放大量热量,如果未能采取有效措施进行温 度控制,就可能导致混凝土内部温度过高,从而产生温 度应力。当这种应力超过混凝土的抗拉强度时,就会产 生裂痕。这些裂痕不仅影响混凝土的美观性, 更重要的 是会降低其结构的整体性和耐久性, 从而对建筑物的安 全构成威胁。

1.2 混凝土施工技术的优点

混凝土施工技术之所以能够在建筑工程中得到广泛 应用,与其显著的性能优势和效益优势密不可分。从性 能优势来看, 混凝土施工技术能够显著提升建筑结构的 强度、韧性、坚固性及稳定性。混凝土作为一种复合材 料,其抗压强度、抗拉强度和抗剪强度均较高,能够承 受各种复杂荷载。混凝土的韧性也较好,能够在一定程 度上抵抗地震、风载等动力荷载的作用。混凝土的坚固 性和稳定性使得其成为高层建筑、大型桥梁、隧道等工 程的首选材料。在效益优势方面,混凝土施工技术具有 便捷、节约工期和成本的特点。混凝土施工通常采用机 械化作业,能够大大提高施工效率,缩短工期。由于混 凝土原材料来源广泛,价格相对较低,混凝土施工成本 也相对较低。这使得混凝土施工技术在建筑工程中具有 极高的性价比[1]。随着科技的进步和施工工艺的不断改 进,混凝土施工技术的性能优势和效益优势将得到进一 步发挥。例如,高性能混凝土、自密实混凝土等新型混 凝土材料的出现, 使得混凝土在强度、耐久性、工作性 等方面得到了显著提升。混凝土施工技术的智能化、自 动化水平也在不断提高,如采用无人机进行混凝土浇 筑、利用物联网技术进行施工监控等,这些新技术的应 用将进一步推动混凝土施工技术的发展。

2 混凝土施工原料选择与配比

2.1 水泥选择

水泥作为混凝土的主要胶凝材料,其选择至关重要。根据化学成分和物理性能的不同,水泥主要分为普通硅酸盐水泥(普硅)、硅酸盐水泥、矿渣水泥等多种类型。在选择水泥时,需重点考虑以下几个因素:(1)强度:不同类型的水泥具有不同的强度等级,应根据工程需求选择合适强度的水泥。一般来说,高层建筑、桥梁等大型结构需要选择高强度水泥。(2)体积安定性:水泥的体积安定性是指水泥在硬化过程中体积变化的稳

定性。体积安定性不良的水泥会导致混凝土开裂,严重影响工程质量。(3)富裕系数:富裕系数反映了水泥强度的保证率,选择富裕系数较高的水泥可以确保混凝土强度的可靠性。(4)需水量:水泥的需水量直接影响混凝土的拌合物性能。需水量低的水泥可以节约水资源,提高混凝土的密实度和强度。

2.2 矿物细掺料选择

矿物细掺料如粉煤灰、矿渣粉等,不仅可以降低成本,还能显著改善混凝土的性能。它们能够替代部分水泥,减少水泥用量,从而降低混凝土的热裂风险。矿物细掺料还能提高混凝土的拌合物流动性,使混凝土更加易于施工。在选择矿物细掺料时,应注重其品质的科学搭配,确保既能发挥经济效益,又能保证工程质量。

2.3 骨料选择

骨料是混凝土中占比最大的组成部分,对混凝土的性能有着重要影响。骨料主要分为砂和石两类: (1)砂石:选择质量优异的砂石是保证混凝土质量的基础。中粗砂或中砂因其颗粒级配合理,能够提供良好的工作性和强度。应严格控制砂率,避免砂率过高导致混凝土强度下降。(2)碎石:碎石作为粗骨料,其粒径、形状、含泥量等指标均需满足工程要求。超逊径碎石(即粒径超出或小于规定范围的碎石)应严格控制,以免影响混凝土的拌合物性能和强度。碎石的含泥量也是影响混凝土质量的关键因素,应严格控制含泥量在允许范围内。

2.4 添加剂选择

添加剂如减水剂、引气剂等,能够显著改善混凝土的性能。减水剂能够降低混凝土的用水量,提高混凝土的强度和耐久性;引气剂则能在混凝土中引入微小气泡,提高混凝土的抗冻性和抗渗性。在选择添加剂时,应注重其品质的检测和认证,确保添加剂的质量符合相关标准。根据工程需求选择合适的添加剂种类和掺量,以达到最佳的混凝土性能。

3 混凝土施工技术要点及工艺

3.1 混凝土浇筑施工的基本要求

混凝土浇筑施工是混凝土工程中的核心环节,其基本要求对于保证混凝土质量至关重要。关于混凝土自由倾落高度的限制,是确保施工安全和质量的关键。当混凝土从高处自由倾落时,若高度过大,不仅会造成混凝土的离析,影响混凝土的均匀性和强度,还可能对施工人员构成安全隐患。在施工中应严格控制混凝土的自由倾落高度,必要时应设置溜槽或串筒等辅助设施,以降低混凝土的下落速度,减少冲击力。分段、分层浇筑方式是混凝土浇筑施工中常用的方法。这种方法通过将混

凝土分成若干段或层进行浇筑,有利于控制混凝土的浇筑速度和温度,减少混凝土的收缩和裂缝产生^[2]。在分段浇筑时,应根据工程的结构特点和施工条件,合理划分浇筑段,确保每段混凝土的浇筑质量。在分层浇筑时,应严格控制每层的浇筑厚度和振捣速度,以确保混凝土的密实度和均匀性。在浇筑过程中应密切观察混凝土的状态,及时调整施工参数,确保混凝土浇筑的连续性和稳定性。

3.2 安装混凝土泵

混凝土泵是混凝土施工中常用的输送设备,其安装质量直接影响混凝土的输送效率和施工质量。在安装混凝土泵时,应选择合适的固定方式,确保泵车的稳定性和安全性。固定方式可采用地锚、支架等,具体应根据施工场地的地质条件和泵车的型号来确定。支架的设置应合理,既要满足泵车的支撑需求,又要避免对周围结构造成破坏。弯头是混凝土泵输送管道中的重要部件,其质量和状态直接影响混凝土的输送效率。在安装和使用弯头时,应仔细检查弯头的外观和内壁,确保其无裂纹、无磨损、无堵塞等现象。若发现弯头存在问题,应及时更换或修复,以免影响混凝土的输送和施工质量。

3.3 浇筑技术

浇筑技术是混凝土施工中的关键环节,其操作质量直接影响混凝土的性能和质量。在浇筑前,应铺设一层碱石子砂浆,以隔离下层混凝土和上层混凝土,减少层间粘结力,有利于混凝土的分层浇筑和振捣。分层浇筑时,应严格控制每层的浇筑厚度和振捣速度,确保混凝土的密实度和均匀性。振捣是混凝土浇筑中的重要工序,通过振捣可以排除混凝土中的气泡和多余水分,提高混凝土的密实度和强度。在振捣过程中,应根据混凝土的坍落度和振捣器的性能,合理调整振捣频率和力度,确保振捣效果。在浇筑过程中应密切观察混凝土的状态,包括混凝土的坍落度、和易性、颜色等,以便及时调整施工参数。若发现混凝土存在离析、泌水等现象,应及时采取措施进行补救,以免影响混凝土的质量和性能。

3.4 后浇带施工

后浇带施工是混凝土工程中的特殊环节,主要用于解决混凝土收缩和温度应力等问题。在后浇带施工前,应明确时间要求,确保后浇带在混凝土达到一定强度后进行。应安装止水条,以防止水分从后浇带渗入结构内部,影响结构的耐久性和安全性。钢筋的检查与处理是后浇带施工中的重要工序。在浇筑后浇带前,应对钢筋进行仔细检查,确保其位置正确、数量齐全、无锈蚀

和污染。若发现钢筋存在问题,应及时进行处理,以免 影响后浇带的施工质量。为提高后浇带混凝土的强度等 级,应在浇筑前对后浇带部位进行清理和湿润,确保混 凝土与原有结构的粘结力。

3.5 混凝土材料运输

混凝土材料的运输是混凝土施工中的重要环节,其质量和效率直接影响混凝土的施工质量和进度。在混凝土材料的运输过程中,应选择合适的混凝土罐车,确保其容量、性能和稳定性满足施工需求。应对混凝土罐车进行定期检查和维护,确保其正常运转和安全使用。在运输过程中,应严格控制混凝土的搅拌速度和搅拌时间,确保混凝土的均匀性和稳定性。应密切观察混凝土的坍落度和温度等参数,以便及时调整运输参数^[3]。若发现混凝土存在离析、泌水等现象,应及时采取措施进行补救,以免影响混凝土的质量和性能。在运输过程中应确保混凝土罐车的稳定性和安全性,避免发生倾覆或泄漏等事故。

4 混凝土施工常见问题及预防措施

4.1 蜂窝问题

现为混凝土表面存在大小不等的窟窿,形状类似蜂窝。 引发蜂窝问题的主要原因包括配合比不当、搅拌不匀以 及下料不合理等。(1)原因分析:配合比不合理会导 致混凝土中各组分的比例失衡,从而影响混凝土的均匀 性和密实性。搅拌不均匀则会使混凝土中的骨料和水泥 浆分布不均,形成局部空洞。下料不合理,如一次性下 料过多或振捣不充分,也会导致混凝土内部出现空洞。 (2)预防措施:针对蜂窝问题,应优化混凝土的配合 比,确保各组分的比例合理,满足施工要求。同时加强 混凝土的搅拌,确保搅拌均匀,无死角。在下料时,应 合理控制下料量,避免一次性下料过多,同时加强振

蜂窝是混凝土施工中常见的一种质量问题,具体表

4.2 疏松问题

捣,确保混凝土内部密实无空洞。

疏松是指混凝土局部不密实,存在空隙或孔洞,导致混凝土的强度和耐久性降低。(1)原因分析:疏松问题主要由局部混凝土不密实和含泥量超标引起。局部混凝土不密实可能是由于振捣不充分或模板支护不牢导致的。含泥量超标则会使混凝土中的泥质成分增多,影响混凝土的强度和密实性。(2)预防措施:为预防疏松问题,应加强原材料的控制,确保混凝土中各组分的质量符合要求。同时提高振捣质量,确保混凝土内部密实无空隙。在模板支护方面,应加强模板的支护力度,确保模板稳定可靠,避免在浇筑过程中发生变形或位移。

4.3 外表缺陷问题

外表缺陷是指混凝土表面出现的裂缝、麻面、气泡等问题,影响混凝土的美观性和耐久性。(1)原因分析:外表缺陷问题主要由模板支护不牢和振捣不严密引起。模板支护不牢会导致混凝土在浇筑过程中发生变形或位移,从而在表面形成裂缝或麻面。振捣不严密则会使混凝土中的气泡无法排出,形成气泡孔。(2)预防措施:为预防外表缺陷问题,应加强模板的支护力度,确保模板稳定可靠,避免在浇筑过程中发生变形或位移。在振捣过程中,应按顺序进行振捣,确保混凝土内部的气泡能够充分排出,避免形成气泡孔。还应加强混凝土的养护工作,确保混凝土在硬化过程中保持适宜的温度和湿度条件。

4.4 外型缺陷问题

外型缺陷是指混凝土构件的形状、尺寸或位置不符合设计要求,如支模垫块不当、钢筋移位等。(1)原因分析:外型缺陷问题主要由支模垫块放置不当和钢筋固定不牢引起。支模垫块放置不当会导致模板在浇筑过程中发生变形或位移,从而影响混凝土构件的形状和尺寸。钢筋固定不牢则会使钢筋在浇筑过程中发生移位或变形,影响混凝土构件的结构性能。(2)预防措施:为预防外型缺陷问题,应合理放置支模垫块,确保垫块的位置、数量和尺寸符合要求。同时加强钢筋的固定工作,确保钢筋在浇筑过程中不发生移位或变形。在浇筑前,应对模板和钢筋进行仔细检查,确保其符合设计要求。在浇筑过程中,应加强监控和检查,及时发现并处理可能出现的问题。

结束语

混凝土浇筑施工技术对于保证建筑工程的质量和安全具有重要意义。通过优化混凝土原料选择与配比、提高施工技术水平以及加强质量控制措施,可以有效解决混凝土施工中的常见问题,提升混凝土结构的强度和耐久性。未来,随着科技的不断进步和施工工艺的持续创新,混凝土浇筑施工技术将得到进一步发展和完善,为建筑工程的可持续发展提供有力支持。

参考文献

- [1]朱振鹏.研究建筑混凝土工程施工质量问题与对策 [J].低碳世界,2021,11(06):156-157.
- [2]夏良.建筑施工中混凝土浇筑技术措施分析[J].建筑与预算,2023,(08):74-76.
- [3]闫万里.混凝土施工技术在建筑工程中的应用及质量控制[J].四川水泥,2021(07):61-62.