铁路隧道岩爆地段施工技术措施探讨

曹 杰 中铁三局集团桥隧工程有限公司 四川 成都 610000

摘 要:铁路隧道施工中,岩爆地段施工是一大挑战。岩爆是围岩在高地应力作用下应变能突然释放导致的灾害,对施工人员和设备构成严重威胁。本文通过探讨岩爆的特点、危害及产生条件,结合工程实践,提出施工前需初步确定岩爆易发部位,优化开挖工艺和支护顺序;施工中加强地质探测,采取洒水、打孔注水、超前锚杆、钢架支撑等措施预防岩爆;同时加强监测和人员防护,确保施工安全。

关键词:铁路隧道;岩爆地段;施工技术措施

引言:铁路隧道作为现代交通建设的重要组成部分,常常穿越复杂的地质构造区域。在这些区域中,岩爆现象是隧道施工中不可忽视的安全隐患。岩爆的发生不仅影响施工进度,更对施工人员的人身安全构成严重威胁。因此,探讨铁路隧道岩爆地段的施工技术措施,旨在通过科学合理的施工手段和技术创新,有效预防和控制岩爆的发生,保障施工安全,提高工程质量,具有重要的理论和现实意义。

1 铁路隧道岩爆地段地质特征分析

- 1.1 岩爆地段的地质构造与岩性特征
- (1)地质构造背景及应力状态分析。铁路隧道岩爆 地段的地质构造背景往往复杂多变,常处于地壳运动的 活动区,这些区域内地应力较高,特别近代构造活动造 成深部矿岩内地应力累积。在高山峡谷地区,由于河谷 深切, 自重应力和构造应力都相对较大, 使得这些地区 成为岩爆的高发区。在这样的地质构造背景下, 岩体内 部积累了大量的应变能,一旦受到开挖等外部扰动,就 可能引发岩爆。(2)岩性与岩石力学特性的关系。岩 爆地段的岩性特征主要表现为坚硬、脆性, 且完整性较 好。这类岩石具有较高的抗压强度和弹性模量,能够储 存大量的弹性应变能。当岩体受到开挖等外部扰动时, 这些能量会迅速释放,导致岩石爆裂、松脱甚至弹射。 常见的容易发生岩爆的岩石类型有花岗岩、片麻岩等。 岩石的脆性和坚硬性是其发生岩爆的内在条件, 而岩石 的微观结构,如晶粒大小、孔隙率、裂隙分布等,也会 影响其力学性能和破坏模式。

1.2 岩爆发生机理与影响因素

(1)岩爆发生的力学机制探讨。岩爆的发生是岩体内部应变能瞬间释放的结果。在隧道开挖过程中,岩体受到来自不同方向的应力作用,这些应力在局部区域可能形成高度集中。当应力集中程度超过岩石的承载能力

时,岩石内部微观结构会开始发生变化,如微裂隙的萌生、扩展和相互贯通,该过程伴随能量的逐步累积。一旦能量累积到一定程度,且遇到开挖等外部扰动,岩体内部的应变能就会瞬间释放,形成岩爆^[1]。(2)影响岩爆发生的主要因素分析。影响岩爆发生的主要因素包括埋深、岩性和构造应力等。埋深越大,地应力通常越大,从而增加了岩爆的发生风险。岩性方面,坚硬、脆性的岩石更容易发生岩爆。构造应力是影响岩爆发生的关键因素之一,高地应力区域往往是岩爆的高发区。此外,开挖方式、支护措施以及地下水等因素也可能对岩爆的发生产生影响。

2 铁路隧道岩爆地段施工技术措施

2.1 超前地质预报与应力释放技术

在铁路隧道岩爆地段施工中,超前地质预报是预防 岩爆的重要手段。通过地质勘察与数据分析,可以初步 判断岩爆发生的可能性及强度, 为后续的应力释放与支 护措施提供科学依据。(1)超前钻孔释放围岩应力。 超前钻孔技术是一种有效的应力释放方法。在隧道开挖 前,利用地质钻机在掌子面上打设超前钻孔,通过钻孔 释放围岩中的应力,降低岩爆的发生概率。钻孔的深度 和数量需根据地质勘察结果与施工经验进行确定,以确 保应力释放的充分性。此外,钻孔过程中还需对钻孔排 出的岩屑进行地质分析, 以进一步了解前方岩体的地质 特征。(2)超前预裂爆破技术的应用。超前预裂爆破技 术通过控制爆破参数,在掌子面前方形成预裂面,降低 开挖过程中的应力集中。这种方法可以减小开挖对围岩 的扰动,从而降低岩爆的发生风险。预裂爆破的参数设 计需考虑地质条件、开挖断面尺寸等因素,以确保预裂 效果[2]。(3)超前导洞开挖法的作用与原理。超前导洞 开挖法是通过先行掘进一个小断面导洞, 使岩层中的高 地应力得以部分释放,再进行隧道的扩控。这种方法能 够显著降低隧道开挖过程中的应力集中,减少岩爆的发生。超前导洞的位置、断面尺寸及开挖方式需根据地质勘察结果与施工条件进行合理设计。

2.2 加强支护与防护措施

在铁路隧道岩爆地段,加强支护是确保施工安全的 关键措施。通过合理的支护设计, 可以提高围岩的稳定 性,降低岩爆的危害程度。(1)锚杆、钢拱架等超前 支护措施。在隧道开挖前,需在掌子面前方打设超前锚 杆,以增强围岩的稳定性。锚杆的长度、直径及间距需 根据地质条件与支护要求进行设计。此外, 在隧道开挖 过程中,还需及时架设钢拱架等支护结构,以防止围岩 塌落。(2)强支护措施的选择与设计。强支护措施包 括喷射混凝土、锚杆加固等。喷射混凝土能够迅速形成 一层保护壳,提高围岩的抗剪、抗压强度。锚杆加固则 通过打入锚杆并注浆,将围岩与支护结构紧密结合,提 高整体稳定性。在支护设计过程中,需充分考虑地质条 件、开挖断面尺寸及施工要求,以确保支护效果。(3) 作业人员个人防护措施。在铁路隧道岩爆地段施工中, 作业人员面临较高的安全风险。因此,必须为作业人员 提供充分的个人防护措施,如穿戴防砸背心、防砸鞋等 防护装备,以降低岩爆产生的飞石对作业人员的伤害。

2.3 监控量测与预警系统

监控量测是铁路隧道岩爆地段施工中的关键环节。 通过实时监测围岩的变形与应力状态, 可以及时发现并 预警潜在的岩爆风险。(1)岩爆监控量测技术的发展与 应用。随着科技的不断进步, 岩爆监控量测技术得到了 快速发展。目前,已广泛应用的监控量测技术包括应力 监测、位移监测、声波测试等。这些技术能够实时监测 围岩的应力状态、变形情况以及岩体的完整性, 为施工 提供重要的数据支持。(2)应力与变形监测方案设计。 针对铁路隧道岩爆地段的特殊性, 应力与变形监测方案 设计需考虑多个因素。首先,监测点的布置需根据地质 勘察结果与施工经验进行合理规划, 确保监测数据的全 面性和准确性。其次,监测设备的选择也至关重要,需 选用高精度、高稳定性的监测仪器,以提高监测数据的 可靠性。此外,还需制定详细的监测数据处理与分析流 程,以便及时发现并预警潜在的岩爆风险[3]。(3)岩爆 预警系统的建立与实施。岩爆预警系统是铁路隧道岩爆 地段施工中的重要安全保障措施。通过整合监测数据、 地质勘察结果及施工经验,建立岩爆预警模型,实现对 岩爆风险的实时监测与预警。预警系统需具备实时性、 准确性及可靠性,能够在岩爆发生前及时发出预警信 号,为施工人员提供足够的逃生时间。同时,还需制定 详细的应急响应预案,以便在岩爆发生时能够迅速采取 有效的应对措施。

2.4 控制爆破技术

在铁路隧道岩爆地段施工中, 控制爆破技术是降低 岩爆风险的重要手段。通过优化爆破参数、采用预先释 放能量的方法以及加强爆破后加固措施, 可以有效控制 爆破对围岩的扰动程度,降低岩爆的发生概率。(1) 爆破参数优化。爆破参数的优化包括减小装药量、控制 爆破孔间距等。通过降低装药量,可以减小爆破产生的 冲击波和地震波对围岩的扰动。同时, 合理控制爆破孔 间距,可以确保爆破能量的均匀分布,避免局部应力集 中。在优化爆破参数时,需充分考虑地质条件、开挖断 面尺寸及施工要求,以确保爆破效果。(2)预先释放能 量的方法。预先释放能量的方法包括松动爆破法、超前 钻孔预爆法等。这些方法能够在隧道开挖前释放部分围 岩中的应力,降低开挖过程中的应力集中程度。松动爆 破法通过控制爆破参数,在掌子面前方形成松动带,使 围岩中的应力得以释放。超前钻孔预爆法则是在超前钻 孔中装入少量炸药进行爆破,以释放钻孔周围岩体的应 力。这些方法需根据地质条件与施工要求进行合理选择 与实施[4]。(3)爆破后加固措施的选择与实施。爆破后 加固措施是确保隧道结构稳定性的重要环节。在爆破完 成后,需及时对围岩进行加固处理,以提高其抗剪、抗 压强度。加固措施包括喷射混凝土、锚杆加固等。喷射 混凝土能够迅速形成一层保护壳, 防止围岩塌落。锚杆 加固则通过打入锚杆并注浆,将围岩与支护结构紧密结 合,提高整体稳定性。在选择与实施加固措施时,需充 分考虑地质条件、开挖断面尺寸及施工要求, 以确保加 固效果。

3 案例分析与实践应用

3.1 典型铁路隧道岩爆地段施工案例——拉林铁路巴 玉隧道

3.1.1 案例背景与工程概况

拉林铁路巴玉隧道,全长13073米,是拉林铁路的重要组成部分。该隧道穿越地质条件极为复杂的区域,94%的隧道长度位于岩爆区,是世界上岩爆现象最强的隧道之一。岩爆是由于围岩体的突然破坏,伴随着岩体内应变能的突然释放,产生岩石破裂失稳现象,导致岩石碎片从岩体中剥离、崩出,成为岩石地下工程和岩石力学领域的世界性难题。巴玉隧道的施工面临巨大的挑战,必须采取一系列先进的技术和管理措施来确保工程的安全进行。

3.1.2 施工技术措施的实施过程与效果

(1)超前地质预报与应力释放:巴玉隧道的施工 采用了微震监测、地应力检测和超前地质预报等技术, 建立了微震传感器阵列动态布置技术,实时监测和预警 岩爆风险。同时,通过打设超前钻孔、进行松动爆破 等应力释放措施,有效降低了围岩中的应力集中程度。 (2)加强支护与防护措施: 在隧道开挖过程中, 中铁 十二局采用了锚杆支护、挂网喷浆封闭等措施,对岩爆 部位进行了彻底的支护。锚杆的长度和间距根据实际情 况确定,以确保支护效果。同时,加强了作业人员的个 人防护,穿戴防砸背心、防砸鞋等防护装备,防止岩爆 产生的飞石击伤。(3)监控量测与预警系统:在隧道施 工中,建立了完善的监控量测体系,包括应力监测、位 移监测和声波测试等。通过实时监测围岩的变形和应力 状态,及时发现并预警潜在的岩爆风险。同时,制定了 详细的应急预案,确保在岩爆发生时能够迅速有效地应 对。(4)控制爆破技术:采用了优化爆破参数、减小 装药量、控制爆破孔间距等措施,降低了爆破对围岩的 扰动程度。同时,在爆破后立即进行支护,防止围岩塌 落和岩爆的发生。通过这些措施的实施, 巴玉隧道的施 工取得了显著的效果。岩爆的发生频率和强度得到了有 效控制,施工安全性得到了显著提高。隧道开挖进度顺 利,质量得到了保障[5]。

3.1.3 施工中遇到的问题及解决方法

在巴玉隧道的施工过程中,遇到了岩爆持续时间长、强度大等难题。针对这些问题,施工团队采取了多种措施进行应对。一方面,加强了对岩爆的监测和预警,通过实时监测和数据分析,及时发现并预警潜在的岩爆风险。另一方面,优化了支护措施,采用了更先进的支护技术和材料,提高了支护效果。同时,还加强了作业人员的培训和管理,提高了他们的安全意识和应急处理能力。

- 3.2 技术措施的经济效益与安全效益分析
- 3.2.1 对施工进度、成本的影响分析

巴玉隧道的施工采用了先进的技术和管理措施,虽然在一定程度上增加了施工成本,但这些措施的实施有效提高了施工效率和质量,降低了施工风险和安全隐患。通过加强超前地质预报和应力释放、加强支护与防护措施、建立监控量测与预警系统以及采用控制爆破技

术等措施,有效减少了岩爆的发生频率和强度,避免了 因岩爆导致的停工和延期。这在一定程度上节省了施工 时间和成本,提高了工程的经济效益。

3.2.2 对施工安全性的提升效果评估

巴玉隧道的施工安全性得到了显著提升。通过加强监测和预警、优化支护措施、加强个人防护和培训管理等多种措施的实施,有效降低了施工风险和安全隐患。特别是在岩爆地段施工过程中,通过采取一系列针对性的技术措施和管理措施,成功控制了岩爆的发生,保障了作业人员的生命安全。这些措施的实施不仅提高了施工安全性,也增强了施工人员对岩爆等地质灾害的认识和应对能力。从具体的数据来看,巴玉隧道在施工过程中,岩爆事故的发生次数大幅降低,相较于未采取特殊技术措施前,岩爆导致的停工时间减少了近70%。同时,由于加强了个人防护和培训管理,施工人员的受伤率也显著降低。这些都充分证明了技术措施对于提升施工安全性的重要性和有效性。

结束语

综上所述,铁路隧道岩爆地段的施工技术措施是一个综合性的系统工程,涉及超前地质预报、应力释放、加强支护、监控量测与控制爆破等多个环节。通过科学合理的施工技术与管理措施,我们可以有效控制岩爆风险,确保施工安全与质量。未来,随着科技的不断进步和实践经验的积累,我们应持续优化和改进这些技术措施,以更好地应对岩爆挑战,推动铁路隧道建设事业的高质量发展。

参考文献

- [1]刘华礼.超深埋隧道高地应力岩爆地段施工技术[J]. 文化科学,2020,(12):118-119.
- [2]苏建国,常文.铁路高原岩爆隧道施工技术研究[J]. 市政工程,2023,(05):47-48.
- [3]刘江涛.浅谈铁路隧道岩爆防治措施[J].工程地质学,2021,(05):50-51.
- [4]胡应洪.岩溶地段隧洞施工技术措施的探讨[J].建筑设计及理论,2020,(10):98-99.
- [5]赵鑫,孙林,刘文龙.高埋深隧道开挖岩爆治理施工技术探讨[J].建筑设计及理论,2020,(12):117-118.