城市轨道交通既有线路闭路电视监控系统智慧化升级

张天宁

浙江华展研究设计院股份有限公司 浙江 宁波 315000

摘 要:城市轨道交通既有线路闭路电视监控系统(CCTV)长期运行后,存在画质模糊、功能局限、智能化欠缺等问题,难以契合当下高效运营与安全保障要求。本次智慧化升级方案着重从前端设备入手,推进高清化与智能化改造;优化扩容传输网络;对后端系统进行算法升级与平台整合。同时强化与轨道交通其他系统的协同联动,借助高清摄像机、智能算法、大数据及云计算等技术,达成精准感知、智能分析与快速响应,为城市轨道交通保驾护航。

关键词:城市轨道交通;既有线路;闭路电视监控系统;智慧化升级

1 城市轨道交通既有线路闭路电视监控系统构成与 功能

城市轨道交通既有线路的闭路电视监控系统(Closed-CircuitTelevision,简称CCTV)是保障轨道交通运营安全与效率的重要技术手段。该系统主要由前端采集设备、传输网络、中心控制设备及显示存储设备四大部分构成。前端采集设备包括高清摄像机、云台、防护罩等,负责实时采集车站、隧道、列车车厢等区域的视频图像;传输网络采用光纤、同轴电缆或无线传输方式,确保视频信号稳定、高效地传输至中心控制室;中心控制设备由视频矩阵切换器、数字视频录像机(DVR)、网络视频录像机(NVR)及管理服务器等组成,负责视频信号的切换、处理、存储与管理;显示存储设备则包括监视器、大屏幕显示系统及存储阵列,用于实时显示监控画面并长期保存视频资料[1]。

该系统的主要功能包括;实时监控:对车站出入口、站台、通道、设备区等关键区域进行全天候、全方位监控;录像存储与回放:支持视频数据的长期存储与快速检索,便于事后追溯与分析;智能分析:部分系统集成人脸识别、行为分析等智能算法,实现异常行为预警;远程控制:支持中心对前端摄像机的云台旋转、焦距调整等远程操作;应急指挥:在突发事件中,为运营调度、应急指挥提供直观的视频信息支持。

2 既有 CCTV 系统存在的问题

2.1 视频画质与清晰度欠佳

既有闭路电视监控系统(CCTV)中,部分早期建设的设备因技术标准较低,导致视频画质与清晰度无法满足当前运营需求。部分摄像机使用年限超过十年,传感器性能衰减,成像质量下降,夜间或低光照环境下噪声明显;早期系统多采用标清(SD)或早期高清(720P)设备,难以适应4K/8K超高清监控的发展趋势,细节捕

捉能力不足;部分摄像机防护罩密封性差,长期暴露于户外或高湿度环境,导致镜头起雾、图像模糊;部分线路采用模拟信号传输,受线路老化、电磁干扰等因素影响,视频信号衰减严重,画面出现卡顿、丢帧。

2.2 智能化分析能力薄弱

既有CCTV系统在智能化应用方面存在显著短板, 主要体现为;缺乏智能算法:系统多以基础录像存储与 回放为主,未集成人脸识别、行为分析、目标跟踪等AI 技术,难以实现异常行为的自动预警;数据分析能力不 足:对海量视频数据的挖掘与利用效率低下,无法通过 结构化分析提取有价值信息(如客流统计、区域热度分 析等);系统兼容性差:早期设备与软件平台多采用封 闭式架构,难以接入第三方智能分析模块,限制了功能 扩展;运维依赖人工:异常事件检测仍依赖人工巡检, 效率低且易漏报,无法满足实时性要求。

2.3 数据处理与传输效率低下

既有CCTV系统在数据处理与传输环节面临严峻挑战,随着监控点位与视频数据量的激增,部分线路的存储设备已接近饱和,导致历史数据覆盖周期缩短,关键证据可能丢失;早期网络架构以同轴电缆或低带宽光纤为主,难以支撑高清视频的实时传输,多画面同时调用时易出现卡顿;视频信号从采集到显示需经过多级处理,导致应急指挥中画面延迟,影响决策效率;数据冗余严重;未采用高效编码格式(如H.265),导致相同画质下数据量增大,进一步加剧存储与传输压力。

3 城市轨道交通既有线路 CCTV 系统智慧化升级的 技术支撑

3.1 高清与超高清视频技术

高清(HD, 1080P)与超高清(4K/8K)视频技术作为智慧化升级的基础,通过提升传感器分辨率、优化编码算法(如H.265/HEVC)、增强图像处理能力,实现了

视频画质的质的飞跃。相比传统标清(SD)系统,超高清视频的像素密度提升16倍以上,能够清晰捕捉人脸特征、物体细节及环境动态,为后续的智能分析提供了高质量的数据源。在实际应用中,高清与超高清视频技术可广泛应用于精准监控、智能运维和应急指挥等场景。为确保高清与超高清视频技术的有效实施,需在设备选型、网络升级和存储优化等方面下功夫。选择宽动态、低照度、强光抑制型摄像机,以适应隧道、站台等复杂光照环境;部署万兆光纤骨干网与5G无线回传,保障高清视频的低延迟传输;采用分布式存储与分级存储策略,平衡成本与数据留存周期,满足不同业务场景的需求。

3.2 人工智能技术

人工智能(AI)技术作为智慧化升级的核心驱动力, 通过深度学习、计算机视觉、行为识别等算法, 赋予了 CCTV系统"感知-分析-决策"的能力。在具体应用中, AI技术可实现人脸识别、行为分析和目标跟踪等功能。 人脸识别技术可用于实现黑名单人员预警、客流属性分 析(年龄、性别);行为分析技术可检测徘徊、奔跑、 攀爬等异常行为,并联动报警系统;目标跟踪技术可跨 摄像头追踪可疑人员或物品,生成行动轨迹[2]。近年来, 人工智能技术在轨道交通CCTV系统中的应用取得诸多 技术突破。边缘计算技术的出现, 使得在前端摄像机内 嵌AI芯片成为可能,实现本地化智能分析,降低中心 服务器的压力;多模态融合技术结合视频、音频、传感 器数据,提升复杂场景下的识别准确率;小样本学习技 术通过少量标注数据训练模型,适应了轨道交通场景的 多样性。为推动人工智能技术在轨道交通CCTV系统中 的广泛应用,需在算法训练、系统集成和隐私保护等方 面制定实施路径。基于轨道交通历史数据(如千万级人 脸库、百万级行为样本)训练专属模型,提高算法的针 对性和准确性; 开发AI中间件, 兼容既有视频管理平台 (VMS), 实现无缝对接; 采用脱敏技术、本地化存储等 手段,确保乘客信息的合规使用,保护乘客的隐私权益。

3.3 大数据与云计算技术

大数据与云计算技术为轨道交通CCTV系统的智慧化 升级提供了强大的数据存储、处理和分析能力。轨道交 通CCTV系统每日产生PB级视频数据,通过大数据技术 可实现这些数据的结构化分析,挖掘其中的潜在价值。 在云计算架构方面,可采用混合云部署模式,将实时监 控数据存储于私有云,确保数据的安全性和实时性,将 历史数据归档至公有云,降低存储成本;利用云服务器 的弹性扩展能力,按需分配算力,应对突发大客流或重 大活动保障;通过云平台实现多线路、多系统(如PIS、 AFC)的数据共享与联动,提高系统的整体协同效率。然而大数据与云计算技术在实施过程中也面临着一些挑战。需建立统一的数据标准与标签体系,解决异构数据融合难题,确保数据的一致性和可用性;采用GPU虚拟化、AI加速卡等技术,降低深度学习模型推理成本,提高计算效率;遵循《数据安全法》《个人信息保护法》等相关法律法规,构建数据全生命周期安全防护体系,保障数据的安全和合规使用。

3.4 物联网技术

物联网(IoT)技术通过传感器、RFID标签、低功 耗无线通信(如LoRa、NB-IoT)等技术手段,实现了 CCTV系统与轨道交通其他子系统的深度融合, 拓展了 系统的感知能力和应用范围。在设备互联与感知方面, 物联网技术可在隧道、车站部署温湿度、烟雾传感器, 联动视频画面分析火灾风险;将摄像机状态(如倾斜角 度、存储容量)接入设备管理系统(EAM),实现主动 运维;通过Wi-Fi探针、蓝牙信标,结合视频定位技术, 为乘客提供精准化信息服务。物联网技术还可与其他技 术进行融合创新[3]。为推动物联网技术在轨道交通CCTV 系统中的应用,需采取一系列实施策略。采用OPCUA、 MQTT等工业协议,确保异构设备之间的互联互通;部署 物联网安全网关, 防范设备劫持、数据篡改等攻击, 保 障系统的安全稳定运行;基于IoT数据预测摄像机故障, 提前备件更换,减少停机时间,提高设备的可用性和维 护效率。

4 城市轨道交通既有线路 CCTV 系统智慧化升级方案设计

4.1 前端设备升级

前端设备作为CCTV系统的"眼睛",其性能直接 决定了视频采集的质量。在智慧化升级中,需对既有线 路的前端摄像机进行全面更新换代。一方面,引入高清 (1080P及以上)与超高清(4K/8K)摄像机,采用先进 的图像传感器和光学镜头,提升视频的分辨率、色彩还 原度和动态范围,确保在各种光照条件下(如隧道内的 低照度环境、站台的强光环境)都能获取清晰、准确的 视频画面。另一方面,为摄像机集成智能分析模块,如 基于深度学习算法的人脸识别、行为识别芯片,实现前 端智能化。这样,摄像机可在本地对采集到的视频进行 实时分析,检测到异常行为(如奔跑、攀爬、斗殴等) 或可疑人员时,立即触发报警信号并上传至后端系统, 减少数据传输带宽压力,提高系统的响应速度。另外, 还需对前端设备的防护等级进行提升,采用防尘、防 水、防爆、抗震等设计,以适应轨道交通复杂恶劣的运 行环境,确保设备的长期稳定运行。

4.2 传输网络升级

传输网络是连接前端设备与后端系统的"桥梁", 其带宽和稳定性对于视频数据的实时传输至关重要。在 智慧化升级方案中,需对既有线路的传输网络进行全 面优化。对于有线传输部分,可考虑采用万兆光纤骨干 网,提升网络带宽,满足高清、超高清视频的传输需 求。在车站、车辆段等关键节点部署工业级交换机,具 备高可靠性、冗余备份和QoS(服务质量)保障功能, 确保视频数据传输的稳定性和低延迟。对于无线传输部 分,随着5G技术的不断发展,可充分利用5G网络的高带 宽、低时延、大容量特性,在部分区域(如隧道、地下 车站)部署5G微基站,为移动摄像机(如列车上的车载 摄像机)提供高速稳定的无线传输通道。还可采用软件 定义网络(SDN)和网络功能虚拟化(NFV)技术,实 现网络资源的灵活调配和动态管理,根据实际业务需求 自动调整带宽分配,提高网络资源的利用率。

4.3 后端系统升级

后端系统是CCTV系统的"大脑",负责对前端采集 的视频数据进行存储、处理、分析和展示。在智慧化升 级中,需对后端系统进行全面升级改造。在存储方面, 采用分布式存储架构,结合RAID(独立磁盘冗余阵列) 技术和数据冗余备份策略,确保视频数据的安全性和可 靠性。根据视频数据的存储周期和访问频率,采用分级 存储策略,将热数据存储在高速SSD硬盘中,冷数据存 储在大容量机械硬盘中,降低存储成本。在处理和分析 方面,引入大数据处理平台和人工智能算法,对海量视 频数据进行实时分析和挖掘。还可开发智能运维管理系 统,对前端设备、传输网络和后端服务器进行实时监控 和管理,及时发现并处理设备故障和网络异常,提高系 统的运维效率[4]。在展示方面,采用先进的视频管理平台 (VMS),提供直观、便捷的用户界面,支持多画面分 割、视频回放、电子地图导航等功能,方便调度人员和 管理人员对视频进行查看和管理。

4.4 系统集成与融合

城市轨道交通既有线路CCTV系统的智慧化升级不 仅仅是单个系统的升级,还需要与其他相关系统进行 集成与融合,实现信息共享和协同工作。一方面,将 CCTV系统与轨道交通的其他子系统(如综合监控系 统(ISCS)、乘客信息系统(PIS)、自动售检票系统 (AFC)等)进行集成,实现数据交互和联动控制。例 如,当CCTV系统检测到站台客流异常时,可自动联动 ISCS系统调整通风、照明等设备运行状态,同时向PIS系 统发送信息,引导乘客有序疏散;当AFC系统检测到某 台闸机故障时,可联动CCTV系统将故障闸机的视频画面 推送至相关人员的终端设备上,方便维修人员快速定位 故障位置。另一方面,与城市公共安全系统(如公安天 网系统)进行对接,实现视频资源的共享和协同作战。 通过系统集成与融合, 打破信息孤岛, 实现城市轨道交 通系统的整体智能化和协同化运行,提高城市轨道交通 的安全性和运营效率。

结束语

城市轨道交通既有线路CCTV系统的智慧化升级是顺应时代发展的必然选择,也是提升轨道交通运营管理水平的关键举措。本次升级方案从多个维度对系统进行了全面优化,通过技术融合与创新应用,有效提升了系统的性能与功能。未来,随着技术的不断进步,应持续探索新技术在CCTV系统中的应用,进一步完善系统功能,为城市轨道交通的安全、高效、智能运营保驾护航,助力城市公共交通事业迈向新的台阶。

参考文献

- [1]向鹏成,吴柏廷.包容性城市更新理论框架构建[J]. 建筑经济,2020,41(3):109-113.
- [2]高见,邬晓霞,张琰.系统性城市更新与实施路径研究:基于复杂适应系统理论[J].城市发展研究,2020,27(2):62-68.
- [3]裴立原.城市轨道交通Y形线路信号系统拆分改造方案[J].铁路通信信号工程技术,2023,20(11):85-91.
- [4]陈绍文.列车自主运行系统下城市轨道交通线路配线需求研究[J].城市轨道交通研究,2022,25(11):72-75.