测绘工程中测绘新技术要点研究

喻文静 郸城县自然资源局 河南 周口 477150

摘 要:测绘新技术作为现代测绘工程的核心驱动力,深刻重塑了传统作业模式。卫星定位、遥感、无人机测绘及三维激光扫描等技术凭借高精度、高效率优势,显著提升数据采集与处理能力,推动测绘从二维平面向三维空间、从静态监测向动态感知转型。多技术融合、智能化发展趋势,进一步拓展了测绘应用边界,在智慧城市、灾害预警等领域释放巨大潜力,为工程建设、资源管理等提供精准可靠的地理信息支撑。

关键词: 测绘工程; 测绘新技术; 要点

引言

随着地理空间信息需求的持续升级,传统测绘技术已难以满足现代工程对高精度、实时性及智能化的要求。卫星定位、遥感、无人机及三维激光扫描等新技术的涌现,为测绘工程注入全新活力。这些技术凭借自动化数据采集、多元信息融合等特性,突破了时空限制,提升了测绘成果的准确性与可靠性。本文通过剖析测绘新技术的核心要点,探讨其发展趋势,以期为测绘行业技术革新与应用拓展提供参考。

1 测绘新技术在测绘工程中的重要性

测绘工程作为获取地理空间信息的关键技术领域, 正处于从传统测绘向数字化、智能化测绘转型的关键阶 段。在这一进程中,测绘新技术凭借其高效、精准、 智能的特点,重塑着测绘工程的作业模式与成果应用。 三维激光扫描技术能够快速获取目标物体的三维空间数 据,通过点云数据的采集与处理,可构建高精度的三维 模型。在地形测绘中, 它突破了传统测量手段对复杂地 形的限制,对山地、森林等区域的地形地貌信息采集效 率大幅提升,同时精确还原地形起伏细节,为后续工程 设计与规划提供更全面、准确的数据基础。无人机航测 技术凭借灵活的起降方式和便捷的操作, 搭载高分辨率 相机与传感器,可在短时间内对大面积区域进行数据采 集。其生成的正射影像和数字高程模型, 广泛应用于土 地利用现状调查、城市建设规划等领域, 相比传统航空 摄影测量,降低了成本与作业风险,提高了测绘效率与 数据更新频率。卫星遥感技术通过搭载多光谱、高光谱 传感器,实现对地球表面大范围、周期性的动态监测。 在测绘工程中, 其获取的宏观地理信息数据, 有助于掌 握区域地理环境的整体变化趋势, 在资源调查、灾害监 测等方面发挥着不可替代的作用。惯性导航与卫星定位 融合技术,解决了复杂环境下卫星信号遮挡的难题,确 保测绘设备在地下、隧道等区域仍能精准定位,保障了测绘数据采集的连续性与准确性。这些测绘新技术不仅提升了测绘工程的作业效率与成果质量,还拓展了测绘数据的应用边界,为城市建设、资源开发、环境保护等众多领域提供了坚实的数据支撑与技术保障,推动测绘工程向着更高效、更智能的方向发展。

2 测绘工程中测绘新技术要点分析

2.1 卫星定位技术

卫星定位技术依托空间卫星星座系统,通过卫星发 射的信号与地面接收设备的协同运算,实现高精度的位 置确定。全球范围内广泛应用的GPS(全球定位系统)、 GLONASS(格洛纳斯系统)、北斗卫星导航系统等,均 采用多颗卫星组网的方式,通过三角定位原理,将卫星 与接收设备之间的距离测量转化为三维坐标解算。地面 接收机接收来自不同卫星的信号,根据信号传播时间计 算出接收机与卫星的距离,结合已知的卫星轨道参数, 构建空间几何方程, 最终确定接收设备在地球坐标系中 的精确位置。在测绘工程中,卫星定位技术展现出显著 优势。其能够在全球范围内实现全天候、不间断的定位 服务,不受地形、气候等自然条件的限制,无论是高山 峻岭、荒漠戈壁,还是海洋孤岛,均可获得稳定的定位 数据。在地形测绘领域,通过实时动态测量(RTK)技 术,可将测量精度提升至厘米级,极大提高了地形图绘 制的准确性; 在工程建设中, 桥梁、隧道等大型项目的 施工放样环节,卫星定位技术可精确指导施工,确保工 程按设计方案精准实施。卫星定位技术也存在局限性, 在信号遮挡严重的区域,如城市高楼密集区、茂密森林 中,信号易受干扰或遮挡,导致定位精度下降甚至无法 定位[1]。

2.2 遥感技术

遥感技术基于电磁波理论,利用搭载在卫星、飞机

等平台上的传感器,远距离探测目标物体反射、辐射的 电磁波信息,进而获取目标物体的空间特征、属性信 息。不同物体具有独特的电磁波反射或辐射特性, 传感 器将接收到的电磁波信息转换为数据或图像,通过专业 的图像处理与分析技术,提取目标物体的几何形态、光 谱特征等参数,实现对地球表面的宏观监测与分析。在 测绘工程应用中,遥感技术具有大面积同步观测、时效 性强的特点。卫星遥感能够以较短的周期覆盖全球范 围,快速获取地表变化信息,为土地利用动态监测、生 态环境演变研究提供基础数据。高分辨率遥感影像可清 晰呈现地物细节, 在城市规划中, 可用于建筑物分布、 道路网络等信息提取,辅助规划设计;在灾害应急测绘 方面,遥感技术可在灾害发生后迅速获取受灾区域影 像,为灾情评估、救援路线规划提供重要依据。遥感技 术也面临挑战, 其获取的数据易受天气条件影响, 云 层、降雨等会阻碍电磁波传播,导致影像数据质量下 降,对于地表深层信息的探测能力有限,难以获取地下 构造等信息。

2.3 无人机测绘技术

无人机测绘技术融合了无人机平台与多种传感器, 通过无人机搭载的高分辨率相机、激光雷达等设备,实 现对目标区域的快速数据采集。无人机具有灵活机动、 起降便捷的特点,可在复杂地形、人员难以到达的区域 进行作业。在飞行过程中,无人机按照预设航线飞行, 传感器同步采集目标区域的图像、点云等数据, 利用摄 影测量原理或激光扫描原理,经过数据处理与建模, 生成高精度的数字地形模型(DTM)、数字正射影像 (DOM)等成果。在实际测绘工作中,无人机测绘技 术优势明显。相较于传统测绘方式, 其作业效率大幅提 升,可在短时间内完成大面积区域的测绘任务,降低人 力成本。在地形测绘中,无人机可快速获取地形地貌数 据,尤其适用于山区、丘陵等地形复杂区域;在工程测 量方面,对道路、桥梁等工程建设项目的前期勘测与后 期监测,无人机能够及时获取工程现场的实时信息,为 工程进度把控与质量评估提供数据支持。不过,无人机 受续航能力、载荷重量限制,单次作业时间和覆盖范围 有限,且在强风、暴雨等恶劣天气条件下,飞行安全性 与数据采集质量会受到较大影响^[2]。

2.4 三维激光扫描技术

三维激光扫描技术通过激光发射器向目标物体发射 激光束,并接收反射回来的激光信号,根据激光的飞行 时间、角度等信息,精确计算目标物体表面点的三维 坐标,快速获取物体的空间几何形态,构建高精度的三 维点云模型。该技术具有非接触式测量、数据采集速度 快、精度高的特点,能够完整记录目标物体的表面信息,包括复杂的几何形状、纹理细节等。在测绘工程应 用中,三维激光扫描技术发挥着重要作用。在古建筑测 绘领域,可精确获取古建筑的三维形态,为古建筑的保护、修缮提供详细数据;在矿山测绘中,能够快速获取 矿山地形、矿洞结构等信息,辅助矿山开采设计与安全 监测;在城市三维建模方面,通过对城市建筑物、道路、植被等进行扫描,构建逼真的城市三维模型,为城 市规划、智慧城市建设提供基础数据支撑。但三维激光 扫描技术也存在一定不足,其数据采集受物体表面特性 影响较大,对于透明、反光等特殊材质的物体,激光反 射信号不稳定,会导致数据采集误差,且采集的数据量 庞大,后期数据处理与分析对硬件设备和专业技术要求 较高。

3 测绘工程中测绘新技术的发展趋势

3.1 多技术融合化

(1)测绘工程正处于多技术深度融合的变革阶段, 卫星遥感、全球导航卫星系统、地理信息系统等技术与 物联网、大数据、云计算相互渗透。卫星遥感可获取广 域空间数据,全球导航卫星系统提供精准定位信息,地 理信息系统实现数据的高效管理与分析, 而物联网设备 能实时采集多源数据,大数据和云计算则为海量数据处 理提供强大支撑,多技术的有机结合构建起全方位、立 体化的数据采集与处理体系。(2)无人机技术与激光扫 描技术的融合为测绘带来全新模式。无人机凭借灵活机 动的特点,可快速抵达复杂地形区域,搭载的激光扫描 仪能够快速获取高精度的三维点云数据,精确还原地形 地貌和地物特征。在城市建筑测绘中,通过无人机激光 扫描技术, 能快速获取建筑物的三维模型, 精确测量建 筑物的尺寸、形状等信息,相比传统测绘方式,大幅提 升了测绘效率和精度。(3)多光谱成像技术与雷达技术 的融合进一步拓展了测绘的应用场景。多光谱成像可获 取地物在不同波段的光谱信息,用于地物分类和识别; 雷达技术则不受天气和光照条件限制, 能够全天候获取 数据。两者结合, 在地质灾害监测中发挥重要作用, 可 实时监测山体滑坡、泥石流等灾害的发生和发展, 为灾 害预警和应急处置提供准确的数据支持。

3.2 智能化与自动化

(1)随着人工智能算法的不断发展,测绘新技术在数据采集、处理和分析环节展现出显著的智能化与自动化特征。在数据采集方面,智能传感器和移动测量系统能够自动感知环境变化,根据设定的规则自主调整采集

参数,实现数据的高效采集。例如,智能全站仪可自动 搜索目标,完成测量和数据记录,无需人工频繁操作, 极大提高了野外作业效率。(2)在数据处理过程中, 基于深度学习的算法能够自动识别和提取地物信息。通 过对大量样本数据的学习训练,算法可准确区分道路、 建筑、植被等不同地物, 自动生成高精度的地图要素。 在影像处理中,深度学习算法可自动校正影像的几何变 形,增强影像的清晰度,为后续的分析和应用提供高质 量的数据基础。(3)智能化决策支持系统成为测绘工程 的重要发展方向。该系统整合了多源数据和专业知识, 利用人工智能和大数据分析技术, 能够对测绘成果进行 智能评估和分析, 为工程规划、设计和施工提供科学合 理的决策建议。在道路选线工程中,智能化决策支持系 统可综合考虑地形起伏、地质条件、交通流量分布以及 环境生态影响等多种复杂因素,自动生成最优选线方 案,提高工程决策的科学性和合理性[3]。

3.3 高精度与高分辨率

(1)测绘新技术的发展使得测量精度和分辨率不断 提升,满足了日益增长的高精度测绘需求。全球导航卫 星系统的升级和优化,结合高精度差分技术,实现了厘 米级甚至毫米级的定位精度。在桥梁变形监测中,利用 高精度的卫星定位技术, 能够实时监测桥梁在荷载作用 下的微小变形,及时发现潜在的安全隐患,保障桥梁的 安全运营。(2)高分辨率遥感影像技术的进步为测绘提 供了丰富的细节信息。如今的遥感卫星可获取分辨率达 到亚米级的影像,清晰展现地物的纹理、形状和结构特 征。在城市规划中, 高分辨率遥感影像能够准确识别建 筑物、道路、绿地等城市要素, 为城市规划和设计提供 详细的数据资料,助力实现精细化的城市管理。(3) 三维激光扫描技术通过高密度的点云数据采集,构建出 高精度的三维模型。该技术能够精确测量地物的空间位 置和几何尺寸,误差可控制在毫米级别。在文物保护领 域,三维激光扫描技术可完整记录文物的外观形态和细 节特征,为文物的修复和保护提供精确的数据依据,实 现对文物的数字化存档和展示。

3.4 应用领域拓展化

(1)测绘新技术不再局限于传统的地形测绘和工程 测量领域,在众多新兴领域展现出巨大的应用潜力。在 智慧城市建设中, 测绘技术为城市的数字化管理提供基 础数据支持。通过建立城市三维地理信息模型,整合城 市的基础设施、公共服务、交通物流等信息,实现城市 的智能化管理和运行, 提升城市的综合服务水平和居民 的生活质量。(2)在环境保护领域,测绘新技术发挥着 重要作用。利用遥感技术可对大面积的生态环境进行动 态监测,及时掌握森林覆盖变化、水体污染、土地沙化 等情况。结合地理信息系统的空间分析功能,能够分析 环境变化的趋势和影响因素, 为环境保护政策的制定和 环境治理方案的实施提供科学依据。(3)在工业制造领 域,测绘技术的应用推动了智能制造的发展。高精度的 三维测量技术可用于产品的质量检测和逆向工程,通过 对产品进行精确的三维扫描和分析,检测产品的尺寸精 度和形状误差,为产品的优化设计和生产工艺改进提供 数据支持。测绘技术还可应用于工业机器人的定位和导 航,提高机器人的作业精度和效率[4]。

结语

综上所述,测绘新技术的发展推动了测绘工程向智能化、集成化方向迈进。卫星定位、遥感等技术的广泛应用,大幅提升了测绘效率与精度。未来,多技术融合将催生更高效的解决方案,智能化与自动化水平持续提升,测绘成果分辨率与精度也将实现新突破。应用场景的不断拓展将赋予测绘技术更广阔的发展空间,助力其在多领域发挥关键作用,推动测绘行业高质量发展。

参考文献

- [1]徐祥韬,张艳亮.工程测绘中测绘新技术要点研究 [J].世界家苑,2023(1):126-128.
- [2]杨沙沙.工程测绘中测绘新技术要点研究[J].数码-移动生活,2020(4):123.
- [3]原辰潭.工程测绘中测绘新技术要点研究[J].数码-移动生活,2020(1):99.
- [4]贾平.测绘新技术在测绘工程测量中的应用[J].户外装备,2023(10):13-15.