建筑结构桩基础分析

候照英

山东泰安建筑工程集团有限公司 山东 泰安 271600

摘 要: 桩基础作为建筑结构的关键承重部件,对建筑物的稳定性与安全性起着决定性作用。在建筑结构设计与施工中,通过系统的地质勘察收集资料,合理选择桩型并精确计算承载力,优化构造设计,同时运用灌注桩、预制桩、预应力管桩等施工技术,确保桩基础的质量与性能。随着建筑行业的发展,新材料应用、智能化施工监测以及绿色环保可持续发展成为桩基础的重要趋势,为建筑工程的高质量发展提供技术支撑。

关键词:建筑结构;桩基础;设计;技术

引言

在现代建筑工程不断向高层化、大型化发展的背景下,桩基础以其优异的承载性能和适应性,成为保障建筑结构安全稳定的重要基础形式。然而,桩基础的设计与施工涉及地质条件、结构荷载等多方面复杂因素,任何环节的疏漏都可能引发工程质量问题。本文围绕建筑结构桩基础,深入探讨其设计要点、施工技术及未来发展趋势,旨在为建筑工程中桩基础的科学应用提供理论与实践参考。

1 建筑结构桩基础概述

桩基础作为现代建筑工程中广泛应用的深基础形 式,通过将上部结构荷载传递至深层地基土或岩层,有 效满足建筑对承载力、稳定性及变形控制的严苛要求。 其工作原理基于桩身与周围土体的摩阻力及桩端的端承 力共同作用, 使荷载得以合理扩散, 适用于软弱地基、 高层建筑、重型工业厂房等各类复杂工程场景。从材料 构成角度, 桩基础涵盖钢筋混凝土桩、钢桩及组合材料 桩等多种类型。钢筋混凝土桩凭借成本可控、耐久性良 好及可根据工程需求预制或现浇的特性, 成为建筑工程 中最为常见的桩型;钢桩则以高强度、质量轻及施工便 捷的优势, 在特殊地质条件或对施工进度要求严格的项 目中发挥重要作用;组合材料桩结合不同材料的优势, 可针对性地优化桩基础性能。按施工工艺区分,灌注桩 与预制桩各有千秋。灌注桩通过现场成孔、灌注混凝土 形成桩体,能适应复杂地质条件且对周边环境影响较 小; 预制桩在工厂或现场预制后沉入地基, 具有质量易 控、施工效率高的特点。桩基础设计需综合考虑地质勘 察资料、建筑结构类型、荷载大小与分布等因素。设计 过程中, 既要进行单桩竖向承载力、水平承载力计算, 确保桩基础具备足够承载能力, 也要对群桩效应进行分 析,避免因桩间相互作用导致承载力降低或不均匀沉降。

在施工阶段,精确的测量定位、严格的成桩质量控制及 合理的施工顺序安排,是保障桩基础工程质量与安全的 关键。随着建筑技术的不断发展,桩基础在提高施工效 率、增强环境适应性、优化结构性能等方面持续创新, 为现代建筑工程的高质量建设提供了坚实的基础保障。

2 建筑结构桩基础设计要点

2.1 地质勘察与资料收集

地质勘察是桩基础设计的基石,其准确性直接影响桩基础的承载性能与稳定性。需综合运用钻探、静力触探、标准贯入试验等多种原位测试手段,精确获取场地地层分布、岩土物理力学性质参数。通过钻探获取岩芯样本,直观分析土层分层情况,测定黏性土的液塑限、压缩模量,砂土的密实度、内摩擦角等指标,同时利用静力触探连续测定比贯入阻力、锥尖阻力等参数,构建完整的地质剖面模型。对地下水情况的勘察亦不容忽视,需确定地下水位埋深、水位变化幅度及地下水腐蚀性。地下水位的季节性波动会改变土体有效应力,影响桩侧摩阻力;腐蚀性地下水则可能侵蚀桩身材料,降低结构耐久性。还应收集场地周边已有建筑基础资料、地下管线分布、邻近施工活动等信息,综合评估其对拟建桩基础的影响,避免施工过程中出现相互干扰或不利影响,为桩基础设计提供全面、可靠的地质依据[1]。

2.2 桩型选择与承载力计算

桩型选择需结合地质条件、上部结构荷载特征、施工条件及经济性等因素综合确定。对于软弱地基,预制桩可凭借较高的施工质量和承载力快速穿透软土层;灌注桩则适用于复杂地质条件,通过调整成孔工艺适应不同地层。在桩身材料选择上,混凝土桩应用广泛,其强度高、耐久性好;钢桩则具有施工速度快、可回收等优势,适用于对工期要求严格或需考虑材料回收的工程。承载力计算是桩基础设计的关键环节,需分别计算单桩

竖向承载力特征值与水平承载力特征值。竖向承载力计算时,根据地质勘察提供的土层参数,采用经验参数法估算桩侧摩阻力与桩端阻力,或通过静载荷试验直接测定单桩极限承载力,再除以安全系数得到特征值。水平承载力计算则需考虑桩身刚度、土质条件及上部结构对水平位移的限制,对于承受较大水平荷载的桩基,可通过增大桩径、设置斜桩或加强桩顶连接等措施提高水平承载能力,确保桩基础在各种荷载工况下均能满足承载要求。

2.3 桩基础构造设计

桩基础构造设计旨在保证桩身结构完整性与耐久性, 确保其在复杂受力状态下安全可靠工作。桩身混凝土强 度等级需根据荷载大小、环境类别及耐久性要求合理确 定,一般不应低于C25,水下灌注桩混凝土强度等级宜适 当提高。桩身配筋需满足正截面受弯、斜截面受剪及构 造要求,对于受水平荷载较大的桩基,应加强桩身配筋 以提高抗弯能力;对于抗拔桩,需设置足够的抗拔钢筋 承担上拔荷载。桩基础承台设计需保证其具有足够的刚 度与强度,以有效传递上部结构荷载至基桩。承台厚度 应根据上部结构形式、桩数及桩距等因素确定,一般不 宜小于300mm, 且需满足抗冲切、抗剪切及抗弯要求。 承台配筋需按计算确定,并满足最小配筋率规定,同时 应加强承台与桩的连接,通过合理设置锚固长度、钢筋 连接方式确保力的可靠传递。还需考虑桩基础的耐久性 构造措施,如设置混凝土保护层、采取防腐措施等,延 长桩基础使用寿命、保障建筑结构长期稳定安全。

3 建筑结构桩基础施工技术

3.1 灌注桩施工技术

灌注桩施工是通过在施工现场的桩位上成孔,然后在孔内放置钢筋笼、灌注混凝土而形成的桩基础。其施工工艺可根据成孔方式分为多种类型,常见的有泥浆护壁成孔灌注桩、干作业成孔灌注桩、套管成孔灌注桩等。以泥浆护壁成孔灌注桩为例,首先利用钻机在地基土中钻进,泥浆在钻孔过程中起到护壁、悬浮钻渣、冷却钻头等作用,防止孔壁坍塌。随着钻孔深度达到设计要求,需进行清孔作业,通过置换泥浆等方式,将孔底沉渣清除,确保沉渣厚度符合设计及规范要求,为后续混凝土浇筑创造良好条件。混凝土浇筑采用导管法,导管底部需埋入混凝土一定深度,随着混凝土不断灌注,将导管逐步提升,保证混凝土连续、密实填充桩孔,从而形成具有承载能力的灌注桩体。在灌注桩施工过程中,对成孔深度、孔径、垂直度等指标需严格把控,每道工序完成后进行质量检验,避免出现缩颈、断桩等质

量问题,以保障灌注桩的承载性能满足建筑结构要求。

3.2 预制桩施工技术

预制桩是在工厂或施工现场预先制作成型,然后通 过锤击、静压、振动等方式将桩体沉入地基土中的桩基础 形式。预制桩具有制作质量稳定、桩身强度高、承载能 力可靠等特点。锤击沉桩施工时,利用桩锤的冲击力将 预制桩打入土中, 在锤击过程中, 桩锤的落距、锤击频 率以及桩身的垂直度控制至关重要。需根据地质条件和 桩的规格合理选择桩锤型号,避免因锤击力过大导致桩 身破损,或锤击力不足无法将桩沉入设计标高。静压预 制桩则是通过液压系统施加压力,将桩体缓慢压入地基 土中,这种施工方法噪音小、振动小,对周边环境影响 较小,适用于城市区域施工。在静压过程中,要实时监 测压桩力和桩的人土深度,确保桩体达到设计承载力要 求。无论是锤击还是静压施工,预制桩的连接质量也直 接影响桩基础的整体性能,常用的连接方式有焊接、法 兰连接等,连接部位需保证牢固可靠,满足传力要求, 使预制桩能够有效将上部结构荷载传递至地基深处[2]。

3.3 预应力管桩施工技术

预应力管桩是一种采用先张法预应力工艺和离心成 型法制作的空心筒型细长混凝土预制构件。其在生产过 程中,通过张拉预应力钢筋对混凝土施加预压应力,有 效提高桩身的抗裂性能和承载能力。预应力管桩施工多 采用静压法,施工前需对场地进行平整和压实处理,确 保桩机作业时的稳定性。在压桩过程中,利用桩机的液 压夹持系统将管桩垂直夹持,通过液压油缸的推力将管 桩逐节压入地基土中。管桩之间的连接采用端头板焊接 的方式,焊接质量必须符合要求,保证接头处的强度和 整体性。需严格控制压桩的垂直度和压桩力, 避免出现 偏斜和断桩现象。由于预应力管桩的空心结构,在桩身 完整性检测方面,常采用低应变法检测桩身混凝土的完 整性,判断是否存在断裂、缩颈等缺陷。通过科学合理 的施工工艺和严格的质量控制, 预应力管桩能够在建筑 工程中充分发挥其高强度、低沉降、施工速度快等优 势,为建筑结构提供可靠的基础支撑。

4 建筑结构桩基础的发展趋势

4.1 新材料的应用

(1)高性能混凝土在桩基础中的应用正不断拓展, 其具备高强度、高耐久性与良好工作性能。通过优化配 合比,添加优质矿物掺合料与高效外加剂,能提升混凝 土密实度与抗渗性,降低水泥用量,减少水化热,从 而增强桩基础在复杂环境下的长期稳定性,延长使用寿 命,如在沿海地区高侵蚀性土壤与地下水中,可有效抵 御腐蚀。(2)纤维增强材料为桩基础性能提升带来新契机。碳纤维、玻璃纤维等增强复合材料具有强度高、质量轻、耐腐蚀等特性。将其用于桩身加固,可显著提高桩的抗弯、抗剪能力,减小桩身自重,降低运输与施工难度,特别适用于对重量敏感的结构,如海上风电桩基,能在减轻结构负担的同时,确保在恶劣海洋环境下的承载能力。(3)智能材料在桩基础领域的探索也初现端倪。形状记忆合金、压电材料等智能材料,具有感知与响应外部环境变化的能力。例如,形状记忆合金可在桩身因外界荷载产生变形时,通过加热恢复原始形状,起到自动修复微小裂缝、维持结构完整性的作用;压电材料能将桩身受到的应力转化为电能,用于监测桩基础工作状态,实现自监测功能,为桩基础智能化发展奠定基础^[3]。

4.2 智能化施工与监测

(1)施工设备智能化程度不断提高,为桩基础施工 带来革新。智能打桩机配备先进传感器与控制系统,可 实时监测桩身垂直度、贯入度、锤击力等参数,根据预 设标准自动调整施工参数,确保施工质量稳定。如在城 市密集区施工,能精准控制打桩过程,减少对周边建筑 与地下管线的影响,提高施工效率与安全性。(2)基于 物联网技术的监测系统在桩基础全生命周期监测中发挥 重要作用。通过在桩身布置各类传感器,将采集到的应 力、应变、位移等数据实时传输至云平台,借助数据分 析软件进行处理与分析,可直观呈现桩基础工作状态。 一旦出现异常,系统立即发出预警,方便管理人员及时 采取措施,保障结构安全,如在大型桥梁桩基监测中, 能有效预防因桩基病害引发的桥梁安全事故。(3)大数 据与人工智能技术深度融入桩基础施工与监测。利用大 数据对大量施工与监测数据进行挖掘分析,可总结不同 地质条件、施工工艺下的桩基础性能规律, 为后续工程 设计与施工提供参考。人工智能算法可对监测数据进行 预测分析,提前判断桩基础潜在病害发展趋势,实现主 动维护, 提高桩基础管理的科学性与高效性, 如预测桩 基沉降发展,提前制定加固方案。

4.3 绿色环保与可持续发展

(1) 在桩基础施工过程中, 随着环保意识的增强以 及施工要求的提高,采用低噪声、低振动施工技术成为 必然趋势。静压桩技术以其施工时噪声小、振动轻微的 优势, 在城市区域建筑中得到广泛应用, 可极大减少对 周边居民生活与工作环境的干扰。全套管钻孔灌注桩等 工法,能有效控制泥浆排放,降低对土壤与地下水的污 染,实现绿色施工。(2)桩基础材料的可持续性愈发受 到重视。再生材料在桩基础中的应用研究不断深入,如 利用废弃混凝土、钢材等加工制成再生骨料用于混凝土 桩身,或采用再生钢材制作钢桩,既能降低对原生资源 的依赖,减少建筑垃圾排放,又能降低工程造价,实现 资源循环利用,符合可持续发展理念。(3)从全生命周 期角度考量,优化桩基础设计与施工,以降低能源消耗 与环境影响。通过合理设计桩型与布置,提高桩基础承 载效率,减少桩数量,降低材料用量与施工能耗。研发 高效节能的施工设备与工艺,如采用新能源驱动的打桩 机,减少施工过程中的碳排放,推动建筑结构桩基础向 绿色环保与可持续方向发展, 助力建筑行业实现碳中和 目标[4]。

结语

综上所述,建筑结构桩基础的设计与施工需综合考虑地质条件、结构需求等因素,严格把控各环节技术要点,确保桩基础的可靠性与安全性。随着新材料、新技术的不断涌现,桩基础在智能化、绿色化方向将迎来新的突破。未来,需持续深化桩基础理论研究与技术创新,推动建筑结构桩基础技术向更高水平迈进,以适应建筑行业日益增长的高质量发展需求。

参考文献

- [1]王冉,马堃.建筑结构桩基础分析[J].装饰装修天地,2020(2):88.
- [2]张莹.建筑结构桩基础分析[J].电脑校园,2021(12): 1846-1847.
- [3]孙家盛,张峰.建筑结构中桩基础设计分析[J].建筑工程技术与设计,2020(29):815.
- [4]崔家浩.建筑结构中桩基础设计分析[J].全体育, 2020(7):101-102.