水利工程管理中存在的问题与对策研究

料恒字¹ 石雨蒙²
1. 金湖县河湖管理所 江苏 淮安 223000
2. 金湖县水利工程建设管理服务中心 江苏 淮安 223000

摘 要:水利工程作为保障国家水安全、推动经济社会可持续发展的重要基础设施,其管理效能直接影响工程效益发挥。当前,管理体制不完善、基础设施老化、专业人才匮乏等问题制约着水利工程管理水平提升。研究通过剖析现存困境,针对性提出完善管理体制、强化设施维护更新、加强人才队伍建设及推进智慧水利建设等对策,旨在优化水利工程管理模式,提升工程运行质量与服务能力,为水利事业高质量发展提供理论支撑与实践指导。

关键词:水利工程管理;存在的问题;对策

리슬

在经济社会快速发展与水资源需求持续增长的背景下,水利工程的重要性愈发凸显,其不仅关乎防洪减灾、农业灌溉,更是维系生态平衡的关键。然而,我国水利工程管理在实践中暴露出诸多问题,管理体制滞后、设施老化失修、人才短缺等现象普遍存在,严重削弱工程综合效益。本文聚焦水利工程管理中的突出矛盾,深入分析问题成因,探索科学有效的解决路径,以期为推动水利工程管理现代化,实现水利事业可持续发展提供有益参考。

1 水利工程管理的重要性

水利工程作为调节水资源时空分布、保障社会经济 可持续发展的重要基础设施, 其管理工作贯穿工程全生 命周期,对工程效益发挥、生态环境保护及人民生命财 产安全有着深远影响。水利工程建设完成后,通过精细 化管理,能确保水利设施长期稳定运行,最大程度发挥 防洪、灌溉、供水、发电等功能, 为区域经济发展筑牢 根基。以水库工程为例,科学合理的管理能精准控制水 库水位,在洪水来临前有效腾出库容,利用拦洪、滞洪 作用削减洪峰,减轻下游防洪压力;在枯水期,则可根 据用水需求合理调度水量,保障城乡居民生活用水、农 业灌溉用水和工业生产用水安全。河道工程管理中,定 期开展河道清淤疏浚、堤防加固等工作,能够提升河道 行洪能力,防止河道淤积、萎缩导致洪水漫溢,同时也 能改善河道生态环境,维持水生生物的多样性。水利工 程管理对水资源的高效利用起着关键作用。通过对灌区 渠道的维护管理,减少输水过程中的渗漏、蒸发损失, 结合先进的灌溉技术和用水计量设施,实现水资源的精 准分配,提高灌溉水利用效率,促进农业节水增效。对 水利工程设施的日常巡检、养护与维修, 能够及时发现 和消除设备隐患,延长工程使用寿命,降低设施老化、损坏带来的经济损失和安全风险,确保水利工程长期稳定地为社会提供服务。在生态环境保护方面,水利工程管理工作意义重大。合理的水库调度不仅能满足人类用水需求,还能维持下游河道生态基流,保障河流生态系统健康。通过对水利工程周边生态环境的监测与保护,防治水土流失,减少工程建设和运行对自然生态的破坏,实现水利工程与生态环境的协调发展。水利工程管理是保障工程安全运行、发挥工程综合效益、实现水资源可持续利用和生态环境保护的核心环节,对推动经济社会与生态环境协调发展具有不可替代的作用。

2 水利工程管理中存在的问题

2.1 管理体制不完善

水利工程作为兼具防洪、灌溉、供水等多重功能的 复杂系统工程,其管理需多环节紧密配合与精准协同。 当前管理流程中,各部门、各岗位间的权责边界模糊, 缺乏清晰明确的划分, 致使运行过程中出现众多漏洞。 在工程日常调度时, 供水、防洪功能的协调工作, 因没 有清晰的职责界定,易出现各部门互相推诿的现象,导 致调度指令执行不畅,无法根据实际需求及时、有效地 调整运行参数,影响工程综合效益的发挥。管理流程的 繁琐与冗余,进一步降低了管理效率。从设备维修申请 到实际维修作业,中间涉及多层审批,大量时间耗费在 流程周转上, 致使设备故障不能及时处理, 小问题演变 成大故障,增加维修成本与工程运行风险。管理方式的 滞后性显著,在信息化时代,仍过度依赖传统人工记 录、纸质档案管理,数据收集、整理与分析效率低下, 难以快速获取准确的工程运行数据,无法为科学决策提 供有力支撑,难以适应水利工程现代化管理需求。管理 过程中缺乏有效的监督与反馈机制。对工程运行状态、

人员工作质量等方面的监督缺失,问题不能及时发现与 纠正。即使发现问题,反馈渠道不畅,难以将问题迅速 传递至相关责任方,导致问题长期存在,影响工程正常 运行与管理水平提升,使得水利工程管理体制难以形成 闭环,制约工程可持续发展^[1]。

2.2 基础设施老化与维护不足

水利工程基础设施长期暴露于自然环境与复杂工况 之下, 历经多年运行, 老化现象日益严重。混凝土结构 的水坝,长期受水流冲刷、冻融循环等作用,表面出 现裂缝、剥落,内部钢筋锈蚀,结构强度与稳定性不断 下降。输水渠道因长期水流侵蚀、泥沙淤积,渠底、渠 壁破损,渗漏问题加剧,不仅造成水资源浪费,还可能 引发周边土壤盐碱化,影响输水效率与周边生态环境。 老化的基础设施直接威胁工程安全运行。金属闸门因长 期锈蚀, 启闭困难, 在洪水来临时, 可能无法正常开启 与关闭,影响防洪调度,导致洪水漫溢,危及下游人民 生命财产安全。机电设备老化,故障率上升,运行过程 中易出现短路、漏电等故障,不仅影响工程正常运行, 还可能引发安全事故。老化设施的维修成本不断攀升, 由于技术更新,老旧设备零部件难以获取,维修难度加 大,维修费用成倍增长,加重工程运营负担。水利工程 基础设施的维护工作却明显不足。日常巡检流于形式, 未能深入细致地排查潜在隐患,对设施的磨损、老化程 度评估不准确。维护资金投入有限,难以支撑大规模、 系统性的设施修复与更新工作, 仅能进行一些临时性、 应急性的修补,无法从根本上解决问题。维护技术手段 落后,缺乏先进的检测设备与维修工艺,难以对老化设 施进行精准检测与有效修复,使得基础设施老化问题愈 发严重,严重削弱水利工程的功能与效益。

2.3 专业人才匮乏

水利工程管理是一项技术含量高、专业性强的工作,涵盖水文水资源、工程力学、机电设备等多学科知识,需要具备专业知识与丰富实践经验的人才队伍。当前,水利工程管理领域专业人才数量严重不足,难以满足工程管理需求。新入职人员中,部分专业不对口,缺乏系统的水利工程专业知识体系,在面对复杂的工程问题时,难以提出有效的解决方案。现有人才队伍结构不合理,呈现出两极分化现象。第一,经验丰富的老员工,虽然实践经验丰富,但知识结构老化,对新技术、新方法的接受与应用能力较弱,难以适应水利工程现代化管理的发展趋势。第二,年轻人才理论知识扎实,但缺乏实际工程经验,在处理突发问题、复杂工况时,往往束手无策。第三,人才流失现象严重,由于水利工程

工作环境艰苦,野外作业时间长,工作强度大,薪资待遇与工作付出不匹配,导致许多专业人才选择离开,进一步加剧人才短缺问题。专业人才匮乏直接影响水利工程管理质量。在工程运行监测中,缺乏专业的数据分析人才,无法对海量监测数据进行深入分析与挖掘,难以准确判断工程运行状态,及时发现潜在安全隐患。在新技术、新设备应用方面,因缺乏专业技术人才,难以对新技术、新设备进行有效安装、调试与维护,导致设备运行效率低下,无法充分发挥新技术、新设备的优势,制约水利工程管理水平的提升,阻碍行业的创新与发展^[2]。

3 水利工程管理问题的解决对策

3.1 完善管理体制

(1) 构建精细化分级管理模式,依据水利工程的规 模、功能及重要性,将其划分为枢纽型、区域型、流域 型等类别,针对不同类型制定差异化管理方案。对于承 担防洪、灌溉等综合功能的枢纽型工程,建立涵盖工程 运行、设备监测、数据采集的全流程管理体系;区域型 水利工程则以保障周边生产生活用水为核心,强化与周 边生态环境的协同管理, 实现水资源高效利用与生态保 护的平衡。(2)推行扁平化管理架构,减少管理层级, 缩短信息传递链条,提升决策与执行效率。利用数字化 管理平台, 实现各管理部门、作业班组间的信息实时共 享与交互,打破部门壁垒。通过建立跨部门协作小组, 针对工程运行中的突发问题、复杂任务开展联合攻关, 确保管理指令能够迅速传达至基层执行单元,避免因信 息滞后或失真导致的管理漏洞。(3)引入市场化运营 机制,在水利工程的日常维护、设备检修等非核心业务 领域,通过公开招标引入专业第三方服务机构。借助市 场竞争促其提升服务质量、优化流程、降低成本。建立 科学的服务质量评估体系,定期考核第三方机构服务效 果,依据结果调整合作,形成良性竞争环境,推动管理 服务水平持续提升。

3.2 加强基础设施维护与更新

(1)制定全生命周期维护计划,依据水利工程设施的设计使用年限、运行工况及磨损规律,对大坝、渠道、泵站等关键设施进行系统评估,建立详细的维护档案。针对不同设施制定分阶段维护方案,在工程投入运行初期加强监测与调试,中期着重开展预防性维护,后期则根据设施老化程度进行针对性修复或更新,确保设施始终处于良好运行状态。(2)采用先进检测技术提升维护精准度,运用超声波探伤、红外热成像、光纤传感等非接触式检测手段,对水利工程设施的结构完整性、设备运行温度、渗漏情况等进行实时监测。通过大数据

分析技术,对检测数据进行深度挖掘,提前预判设施潜在故障,制定精准的维护策略,避免因过度维护造成资源浪费,或因维护不及时引发安全事故。(3)实施智能化更新改造,将传统水利设施与现代信息技术深度融合。在渠道灌溉系统中引入智能闸门控制系统,根据实时水情、墒情自动调节闸门开度,实现精准灌溉;对泵站设备进行自动化升级,配备智能传感器和远程控制系统,实时监测设备运行参数,自动调整运行状态,提高设备运行效率与可靠性,延长基础设施使用寿命^[3]。

3.3 加强专业人才队伍建设

(1)构建多元化人才引进渠道,聚焦水利工程管理 领域的关键技术岗位,通过与高校、科研机构开展产学 研合作, 定向引进水利工程、自动化控制、信息技术等 专业的优秀毕业生。面向行业内招聘具有丰富实践经验 的技术骨干和高级管理人员, 充实人才队伍。建立人才 储备库,对有意向加入的人才进行动态跟踪与管理,确 保在需要时能够及时补充专业力量。(2)开展定制化人 才培养,根据水利工程管理岗位的不同需求,制定个性 化培养方案。针对一线操作人员, 开展设备操作、日常 维护等技能培训,通过模拟操作、现场实训等方式提升 其实际动手能力;对技术研发人员,组织参与行业前沿 技术研讨、学术交流活动, 鼓励其开展技术创新研究, 掌握先进的水利工程管理技术与方法。(3)完善人才激 励机制,建立以能力、业绩为导向的绩效考核体系,对 在工程管理、技术创新、应急处置等工作中表现突出的 人才给予物质奖励和荣誉表彰。设立技术创新专项奖励 基金,对取得重大技术突破、解决关键技术难题的团队 和个人进行重奖,营造良好的人才发展环境,激发人才 的工作积极性和创新活力,提高人才队伍的稳定性与竞 争力。

3.4 推进智慧水利建设

(1) 搭建全域感知监测网络,在水利工程各关键部位部署水质传感器、水位传感器、流量传感器、气象监测设备等,构建覆盖流域、区域、工程点的立体监测体系。通过物联网技术将各类监测设备联网,实现对水资

源、水环境、水工程等信息的实时采集与传输,为水利 工程管理提供全面、准确的数据支撑,及时掌握工程运 行状态和流域水情变化。(2)开发智能决策支持系统, 基于大数据、人工智能技术,对采集的海量水利数据进 行深度分析与挖掘。构建水利工程运行模拟模型、洪水 演进模型、水资源调配模型等,通过对不同工况的模拟 分析, 为防洪调度、水资源优化配置、工程运行管理等 提供科学决策建议。系统具备自主学习能力,能够根据 实际运行情况不断优化模型参数,提高决策的准确性和 可靠性。(3)打造一体化管理平台,整合水利工程管理 中的监测、调度、运维、应急等业务模块,实现业务流 程的数字化、智能化管理。管理人员通过统一的操作界 面,即可实时查看工程运行状态、下达管理指令、跟踪 任务执行情况。平台与相关部门、上下游工程实现信息 共享与联动, 在发生突发事件时, 能够迅速启动应急响 应机制,协调各方资源开展应急处置,提升水利工程管 理的整体效能与应急能力[4]。

结语

综上所述,水利工程管理是一项系统性、长期性工作,面对管理体制、基础设施、人才建设等方面的现实挑战,需从制度优化、技术革新、人才培养等多维度协同发力。通过完善管理体制、加强设施维护更新、壮大专业人才队伍及推进智慧水利建设,可有效提升水利工程管理效能。未来,应持续深化改革创新,推动管理模式转型升级,助力水利工程在服务国家战略、保障民生福祉中发挥更大作用。

参考文献

[1]鲁艳萍,李万东,彭玉军.水利工程管理中存在的问题与对策研究[J].工程技术研究,2020,5(15):193-194.

[2]董风齐.水利工程管理中存在的问题与对策研究[J]. 中国住宅设施,2021(6):8-9.

[3]孙丽梅.水利工程管理中存在的问题与对策研究[J]. 建筑工程技术与设计,2021(6):1614.

[4]于海生.水利工程管理中存在的问题与对策研究[J]. 百科论坛电子杂志,2020(8):1337.