建筑工程管理中BIM技术的应用

岳轩轩 赵 帅 王 博 中国水利水电第十一工程局有限公司 河南 三门峡 472000

摘 要:本文聚焦建筑工程管理中BIM技术的应用。先阐述BIM技术核心内涵、优势及应用基础,接着分析其在设计、施工、运维各阶段的具体应用,如设计阶段的三维可视化、施工阶段的进度与成本模拟等。随后指出应用中存在技术、人才、管理层面的问题,最后从完善技术支撑体系、加强人才队伍建设、优化管理模式与机制等方面提出提升应用效果的对策,为BIM技术推广提供参考。

关键词:建筑工程; BIM技术; 应用

1 BIM 技术相关概述

1.1 BIM技术的核心内涵

BIM (建筑信息模型技术)以建筑工程项目各项相关信息数据为基础建立模型,通过数字信息仿真模拟建筑物真实信息,涵盖几何形状、空间关系、地理信息及建筑构件属性等。它不只是一个简单三维模型,更是一个包含丰富信息的数据库,信息随项目进展不断更新完善。从规划、设计、施工到运维各阶段信息都能在模型中体现,如设计阶段展示建筑外观、布局与结构形式;施工阶段添加进度、成本、质量等信息;运维阶段记录设备运行与维护历史等。其信息集成性与动态性,为建筑项目全生命周期管理提供有力支持。

1.2 BIM技术的主要优势

提高设计质量:传统二维设计易信息表达不完整、不准,致设计变更频繁。BIM三维可视化模型可直观展示建筑各部分,设计师能及时发现冲突与不合理处,如管线碰撞、布局不合理等,在设计阶段优化,减少错误^[1]。建筑工程涉及多专业与参与方,BIM提供共享平台,各方可在同一模型协同工作、实时交流共享信息,避免传统信息传递问题导致协同困难与效率低下。关联成本与构件,模拟方案与进度算成本,助管理人员提前发现超支风险,调整方案与资源。还能为招投标、合同管理提供准确数据。提升项目管理水平;集成进度、质量、安全等信息可视化展示,助管理人员实时监控、调整进度,跟踪管理质量,模拟事故场景制定预案。

1.3 BIM技术在建筑工程管理中的应用基础

硬件基础: BIM应用需强大硬件支持,如高性能计算机、服务器、图形工作站等,要具备足够计算与图形处理能力,以快速处理显示复杂三维模型。同时,还需配备大容量存储设备,存储海量项目信息。市场有多款BIM软件,如AutodeskRevit、ArchiCAD等,各有特点功能,

能满足不同专业项目需求。还需碰撞检测、成本计算、进度模拟等辅助软件与核心软件集成,实现全面管理功能。为确保BIM有效应用与信息共享交换,要建立统一标准规范,国内外已出台一系列相关标准,如ISO19650系列、《建筑信息模型应用统一标准》等,规范模型创建、交付、管理,提供指导保障。

2 BIM 技术在建筑工程各管理阶段的应用

2.1 在设计阶段的应用

设计师可以利用BIM软件创建三维建筑模型,直观 地展示建筑的外观、内部空间和结构形式。通过三维可 视化设计,设计师可以更好地与客户进行沟通和交流, 让客户更清晰地了解设计方案,提高客户的满意度。同 时,三维模型还可以帮助设计师发现设计中存在的问 题,及时进行优化和改进。在建筑工程设计中,涉及多 个专业,如建筑、结构、机电等。BIM技术提供了一个 协同设计的平台,各个专业设计师可以在同一模型上进 行设计工作,实时共享设计信息。例如,机电设计师在 进行管线设计时,可以参考建筑和结构模型,避免管线 与建筑构件发生碰撞;建筑和结构设计师也可以根据机 电设计的要求,对建筑和结构进行相应的调整,实现多 专业的协同设计,提高设计效率和质量。BIM技术可以 与各种性能模拟分析软件进行集成,对建筑的采光、通 风、能耗等性能进行模拟分析。通过性能模拟分析,设 计师可以优化建筑的设计方案,提高建筑的节能性能和 舒适度。例如,通过采光模拟分析,可以确定建筑的窗 户位置和大小,以充分利用自然采光,减少人工照明的 使用;通过通风模拟分析,可以优化建筑的通风设计, 提高室内空气质量。

2.2 在施工阶段的应用

将施工进度计划与BIM模型进行关联,通过4D模拟 技术,可以直观地展示施工过程的动态变化。项目管理

人员可以通过施工进度模拟,提前发现施工过程中的冲 突和问题, 如施工顺序不合理、资源分配不均衡等, 及 时调整施工进度计划,确保项目按时完成。施工进度模 拟还可以为施工人员提供直观的施工指导,提高施工效 率。将成本信息与BIM模型中的构件进行关联,通过5D 模拟技术, 可以实时计算项目的成本。项目管理人员可 以通过施工成本模拟,对比不同施工方案的成本差异, 选择最优的施工方案,实现成本的精细化管理。施工成 本模拟还可以对项目的成本进行动态监控, 及时发现成 本超支的风险, 采取相应的措施进行控制。BIM技术可以 为施工质量管理提供有力的支持,通过将质量标准和验 收规范与BIM模型进行关联, 施工人员可以在施工过程中 实时查询质量要求,确保施工质量符合标准^[2]。BIM模型 还可以记录施工过程中的质量信息,如检验批、分项工 程、分部工程的验收情况等,为质量追溯提供依据。另 外,利用BIM技术还可以进行质量问题的模拟分析,找出 质量问题的根源,制定针对性的解决方案。BIM技术可 以模拟施工现场的安全状况,识别潜在的安全隐患。同 时,BIM模型还可以为施工人员的安全培训提供直观的教 材,提高施工人员的安全意识和应急处理能力。

2.3 在运维阶段的应用

BIM模型包含了建筑内各种设施的详细信息,如设备 的型号、规格、安装位置、维护历史等。运维管理人员 可以通过BIM模型快速查询设施信息,进行设施的维护 和管理。例如, 当设备出现故障时, 运维管理人员可以 通过BIM模型快速定位设备位置, 查看设备的维护手册 和历史维修记录,及时进行维修和更换,提高设施的运 行效率和可靠性。BIM技术可以对建筑的空间进行动态 管理,通过实时更新空间使用信息,运维管理人员可以 了解建筑内各个空间的使用情况, 合理调整空间布局, 提高空间利用率。例如, 当企业进行部门调整或业务拓 展时,运维管理人员可以根据BIM模型提供的信息,快 速规划新的办公空间,满足企业的需求。在发生火灾、 地震等突发事件时, BIM技术可以为应急管理提供有力 支持。通过BIM模型,应急管理人员可以快速了解建筑 的布局、疏散通道、消防设施等信息,制定科学合理的 应急预案。同时, BIM模型还可以与应急指挥系统进行集 成,实现应急指挥的可视化和智能化,提高应急响应速 度和救援效率。

3 BIM 技术在建筑工程管理应用中存在的问题

3.1 技术层面问题

目前市场上有多种BIM软件,不同软件之间的数据格 式和接口存在差异,导致模型在不同软件之间的转换和 共享存在困难。这不仅影响了信息的传递和协同工作的效率,还可能导致模型信息的丢失和错误。BIM模型包含了大量的信息,随着项目的进展,模型的数据量会不断增加。这对计算机的硬件性能和软件的数据处理能力提出了很高的要求。如果硬件性能不足或软件数据处理能力有限,可能会导致模型加载缓慢、操作卡顿等问题,影响工作效率^[3]。在实际应用中,过高的模型精度会增加模型的复杂度和数据量,导致计算机处理困难,同时也会增加建模的工作量和成本。而过低的模型精度又无法满足项目管理的需求,影响决策的准确性。因此,如何在模型精度和实用性之间找到平衡是一个亟待解决的问题。

3.2 人才层面问题

BIM技术的应用需要既懂建筑专业知识又懂信息技术的复合型人才。目前,这类专业人才相对短缺,高校相关专业的人才培养体系还不够完善,无法满足市场对BIM人才的需求。建筑企业内部的员工对BIM技术的认识和应用能力也参差不齐,缺乏系统的培训和学习。由于BIM技术在建筑行业的应用还处于发展阶段,相关企业的薪酬待遇和职业发展前景还不够明朗,导致一些掌握BIM技术的专业人才容易流失到其他行业或企业,影响了企业BIM技术的推广和应用。

3.3 管理层面问题

传统的建筑工程管理模式以纸质文档和二维图纸为基础,与BIM技术的信息化、数字化管理模式存在较大差异。一些企业对BIM技术的应用还停留在表面,没有真正将其融入到企业的管理体系中,导致BIM技术的优势无法充分发挥。虽然国内外已经出台了一些BIM相关标准规范,但在实际应用中还存在一些不完善的地方。例如,不同地区、不同项目对BIM模型的要求和交付标准存在差异,缺乏统一的标准和规范,给BIM技术的应用和推广带来了一定的困难。BIM技术的应用需要各个专业和参与方之间的协同合作,但目前建筑企业内部的协同机制还不够健全,部门之间、专业之间的沟通和协调存在障碍,信息共享不及时、不准确,影响了BIM技术的应用效果。

4 提升 BIM 技术在建筑工程管理中应用效果的对策

4.1 完善技术支撑体系

政府和企业需充分认识到BIM软件研发的重要性,加大对这一领域的资金投入。鼓励软件企业发挥创新精神,开发拥有自主知识产权且兼容性出色的BIM软件,打破国外软件的垄断局面。同时组织科研力量加强不同软件间的集成研究,制定统一的数据交换标准。如此一来,不同软件创建的模型能在各个平台间实现无缝转换与共享,避免因数据格式不兼容导致的信息丢失和重复

工作。建筑企业要紧跟BIM技术发展步伐,依据其应用需求及时更新计算机硬件设备。提升计算机的计算能力和图形处理能力,确保能快速处理和显示复杂的BIM三维模型,避免出现卡顿、加载缓慢等问题。建立企业级的BIM服务器和数据中心,集中存储和管理海量项目信息,为BIM技术的稳定应用提供强大硬件支撑,保障多用户同时访问和协同工作时的系统流畅性。根据项目不同阶段和管理需求,科学制定模型精度标准。设计阶段,高精度模型可精准展示建筑细节,满足设计审查和性能模拟分析要求;施工和运维阶段,适当降低精度能减少数据量,提高操作效率、降低成本。建立严格的模型精度审核机制,在项目关键节点对模型精度进行检查,确保其符合既定标准,保证项目各阶段信息传递的准确性和一致性。

4.2 加强人才队伍建设

高校作为人才培养的摇篮,应加强BIM相关专业建 设。优化课程设置,增加建筑信息模型、信息技术等 前沿课程,强化实践教学环节,通过实际项目案例让学 生将理论知识与实践相结合。建筑企业要积极与高校合 作,建立实习基地和人才培养基地,为学生提供参与实 际项目的机会, 使其提前熟悉行业需求和工作流程, 为 企业储备具备专业知识和实践能力的复合型人才。建筑 企业要重视员工BIM技术培训、制定定期培训计划。培训 内容涵盖BIM软件操作、模型创建、应用案例分析等方 面,通过理论讲解与实际操作相结合的方式,提高员工 对BIM技术的认识和应用能力。建筑企业需建立完善的人 才激励机制,提高BIM专业人才的薪酬待遇,使其收入与 技能水平和贡献相匹配。为BIM人才提供广阔的职业发展 空间,设立技术专家、项目经理等晋升通道。对在BIM 技术应用方面做出突出贡献的员工给予表彰和奖励, 如 颁发荣誉证书、给予奖金等,增强员工的归属感和成就 感,吸引和留住优秀人才,为企业BIM技术发展提供人才 保障。

4.3 优化管理模式与机制

建筑企业要积极引入先进的项目管理理念和方法,

结合BIM技术特点进行创新。例如采用基于BIM的项目集 成管理模式,将项目进度、成本、质量、安全等信息集 成在BIM模型中。通过模型直观展示项目状态,实现全过 程管理和动态控制。管理人员可实时监控项目进展,及 时发现问题并调整策略,提高项目管理效率和决策科学 性,降低项目风险。政府和行业协会应发挥主导作用, 加快BIM相关标准规范的制定和完善[4]。统一BIM模型的 要求和交付标准,明确模型精度、数据格式、信息分类 等内容,为BIM技术的应用和推广提供指导和保障。建筑 企业要根据国家和行业标准规范,结合自身实际情况, 制定企业内部的BIM应用标准和规范,确保企业内部项目 应用的规范性和一致性。建筑企业要建立健全内部协同 机制,加强部门之间、专业之间的沟通和协调。建立定 期的协同会议制度,及时解决协同工作中存在的问题, 促进信息流通。利用BIM协同平台,实现信息的实时共享 和交流。不同专业人员可在平台上同时对模型进行操作 和修改,提高协同工作效率,减少因沟通不畅导致的错 误和返工,提升项目整体质量。

结束语

BIM技术在建筑工程管理中具有巨大潜力与优势,虽在应用中面临技术兼容、人才短缺、管理滞后等问题,但通过完善技术支撑、加强人才培养、优化管理模式等对策,能有效提升应用效果。随着行业发展,BIM技术有望更广泛深入应用,推动建筑工程管理向信息化、精细化迈进,实现建筑行业的高质量可持续发展。

参考文献

[1]王成华,孙伟,郝长洪.建筑工程管理中BIM技术的应用探讨[J].散装水泥,2022(02):43-45.

[2]齐国栋.浅谈BIM技术在建筑工程项目中的应用[J]. 科技视界,2021(04):74-75.

[3]莫建俊.建筑工程管理中BIM技术的应用[J].江苏建材,2024(1):147-148.DOI:10.3969/j.issn.1004-5538.2024.01.057.

[4]陈小燕.BIM技术在建筑工程管理中的应用研究[J]. 内蒙古煤炭经济,2021,(08):181-182.