配电线路常见故障及配电运检管理措施

赵洪文1 张 斌2

- 1. 国网青海省电力公司治多县供电公司 青海 玉树 815000
- 2. 国网青海省电力公司玉树供电公司 青海 玉树 815000

摘要:配电线路故障成因多样,包括自然因素、设备自身故障、外力破坏与人为因素。配电自动化在故障处理与运检中作用显著,可实现故障定位隔离、状态监测预警及运检智能化管控。配电运检管理核心措施包括完善巡检制度与策略、强化设备全生命周期管理、构建应急抢修体系,以保障线路安全稳定运行。

关键词:配电线路;常见故障;配电运检;管理措施

引言

配电线路作为电力系统的重要组成部分,其运行稳定性直接关系到供电质量与安全。然而,受自然因素、设备老化、外力破坏及人为因素等影响,线路故障频发,给运维管理带来巨大挑战。配电自动化技术的引入,为故障快速定位、状态监测预警及运检流程智能化管控提供了有力支撑。在此背景下,完善巡检制度、强化设备全生命周期管理、构建应急抢修体系等核心措施,成为提升配电线路运维水平、保障电网安全稳定运行的关键所在。

1 配电线路常见故障类型及成因

1.1 自然因素引发的故障

自然因素在配电线路故障成因中占据着极为关键的 地位,是引发故障的主要诱因之一。(1)雷击,作为极 具破坏力的自然现象,对配电线路的危害极大。在雷雨 多发区域, 雷电产生的高电压、强电流会瞬间作用于线 路,造成线路绝缘子被击穿,使绝缘性能丧失,同时导 线也可能因过大的电流冲击而被烧断, 进而导致线路跳 闸率显著升高,严重影响供电的稳定性与可靠性。(2) 强风同样不容小觑。当狂风来袭,导线会在风力作用下 摆动幅度大幅增大,极易引发相间短路,或者使导线与 周边的树木、建筑物等接触,造成线路故障。(3)覆冰 现象在寒冷地区较为常见,冰层附着在导线上会大幅增 加导线负重。当负重超过杆塔的承载能力时,就会导致 杆塔倾斜甚至倒塌,导线也可能因不堪重负而断裂。而 且,覆冰融化时,水分附着在绝缘子上,可能引发绝缘 子闪络,威胁线路安全。(4)暴雨和洪水也会对配电线 路造成严重破坏。持续暴雨可能使水位上涨,淹没杆塔 基础,导致杆塔倒塌;洪水还会使土壤软化,降低杆塔 的稳定性,同时造成接地电阻下降,影响线路的绝缘性 能,给配电线路的安全运行带来巨大挑战。

1.2 设备自身故障

配电线路设备在长期持续的运行过程中, 不可避免 地会受到各种因素的影响, 进而因老化、磨损等状况而 出现故障,对线路的安全稳定运行构成严重威胁。(1) 绝缘子作为保障线路绝缘性能的关键部件,长期暴露在 自然环境中,会逐渐老化。其绝缘性能会随之下降,导 致泄漏电流不断增大,严重时甚至会发生闪络现象,使 得线路绝缘被击穿,引发故障停电。(2)导线接头部位 也是故障的高发点。由于压接不牢或者长期处于复杂环 境中发生氧化腐蚀,会导致接头处接触不良。接触不良 会使电阻增大,在电流通过时产生过多的热量,进而引 发导线发热。若情况持续恶化,就可能导致断线或者短 路等严重故障。(3)开关设备,像断路器、熔断器等, 其机械结构在频繁操作过程中容易出现故障, 触头也会 因长期摩擦而磨损。这会导致分合闸失灵, 无法在故障 发生时及时、正常地隔离故障区域,扩大事故影响范 围。(4)杆塔及金具长期经受风吹日晒、雨淋雪蚀,会 发生锈蚀、变形。这会严重影响线路的结构稳定性,降 低杆塔的承载能力, 甚至引发倒杆事故, 造成大面积停 电和严重的经济损失。

1.3 外力破坏与人为因素

外力破坏在配电线路故障成因中占据着相当重要的比例,对线路的安全稳定运行构成了严重威胁。(1)在各类施工场景中,施工机械如挖掘机、吊车等,由于操作人员的疏忽或者对线路位置判断失误,极有可能误碰导线或杆塔。这种直接的碰撞冲击,轻则导致导线出现破损、断裂,影响线路的正常导电功能;重则使杆塔发生倾斜、倒塌,造成线路大面积瘫痪,修复难度大且耗时长。(2)车辆碰撞杆塔也是常见的外力破坏形式。在交通繁忙区域或者道路状况复杂的路段,车辆失控撞上杆塔,会瞬间破坏线路的结构完整性,使导线松弛、断

裂,引发停电事故。(3)树障问题同样不容忽视。随着树木的生长,若与导线之间的安全距离不足,在大风天气下,树木摇晃摆动极易与导线接触,引发相间短路或接地故障,导致线路跳闸。(4)一些不法分子盗窃线路设备,以及部分人员违章建房,将建筑物搭建在线路保护区内,这些人为行为都严重威胁着配电线路的安全运行,不仅可能造成设备损坏,还可能引发触电等安全事故,给人们的生命财产带来巨大损失¹¹。

2 配电自动化在故障处理与运检中的应用

2.1 故障自动定位与隔离

在配电网络的运行管理中, 故障自动定位与隔离是 保障供电可靠性、提升运维效率的关键环节,而配电自 动化系统在其中发挥着核心作用。(1)该系统通过在配 电线路上科学合理地安装馈线终端单元(FTU)、配电终 端单元(DTU)等先进设备,构建起全方位的信息采集 网络。这些设备能够实时、精准地采集线路的电流、电 压、开关状态等关键运行参数,并将数据迅速上传至主 站系统,为故障判断提供详实依据。(2)当线路突发故 障时, 主站系统立即启动高效的故障分析机制。它凭借 强大的数据处理能力,深入分析故障电流的独特特征, 同时对各终端上传的数据进行细致对比和综合研判。凭 借这一先进算法和精准分析, 系统能够快速且准确地定 位故障区段, 定位准确率高达90%以上, 大大缩短了故障 排查时间。(3)在精准定位故障后,配电自动化系统展 现出了卓越的自动化控制能力。它能自动向相关设备发 出清晰明确的指令,精准控制分段开关、联络开关进行 相应动作。通过这一系列操作,迅速隔离故障区段,防 止故障进一步扩散,同时及时恢复非故障区域的供电, 将故障对用户的影响范围压缩到最小, 有效缩短了停电 时间,显著提升了供电的连续性和稳定性。

2.2 状态监测与预警

在配电网络智能化运维的进程中,状态监测与预警是保障线路安全稳定运行、提升供电可靠性的重要手段,配电自动化系统凭借其先进的在线监测技术,在这一领域发挥着关键作用。(1)该系统高度集成在线监测技术,能够对配电线路的多种关键状态参数展开全方位、实时性的监测。这些参数涵盖线路温度、负荷大小、绝缘子泄漏电流以及杆塔倾斜度等。通过对这些参数的持续跟踪,系统可以精准掌握线路的实际运行状况,及时发现潜在的安全隐患。(2)为了实现对异常情况的快速响应,系统为各项监测参数设定了科学合理的阈值。一旦某个参数超出正常范围,系统会立即自动发出预警信号,以醒目的方式提醒运检人员。例如,当监

测到导线接头温度出现异常升高时,系统能预判接头存在过热风险,运检人员可据此提前安排检修工作,避免接头因过热而熔断,引发线路故障。又如,当监测到线路负荷持续超标时,系统可及时发出预警,运维人员能够迅速调整负荷分配,防止导线因过载而烧毁。(3)通过这种状态监测与预警机制,配电自动化系统成功实现了从传统的"故障后维修"模式向"故障前预警"模式的转变,有效降低了故障发生率,提高了配电线路的运行效率和安全性^[2]。

2.3 运检流程智能化管控

在配电网络日益复杂、对供电可靠性要求不断提高 的背景下, 运检流程智能化管控成为提升配电运维水平 的关键举措,配电自动化系统与调度、运维平台的深度 联动,为这一目标的实现提供了有力支撑。(1)该系 统具备强大的线路状态评估能力,能够依据实时采集的 线路运行数据,精准评估线路的健康状况。基于评估结 果,系统可自动生成科学合理的巡检计划,综合考虑线 路分布、设备重要程度等因素, 合理规划巡检路线, 避 免巡检资源的浪费,显著提高巡检效率。(2)巡检人员 借助移动终端接收巡检任务, 在现场巡检过程中, 能够 实时上传巡检数据和现场图片。主站系统对这些数据进 行快速、准确的分析,自动生成电子化巡检报告,不仅 减少了人工记录可能出现的误差,还实现了巡检数据的 电子化存储和便捷查询。(3)在故障抢修环节,系统的 优势更加凸显。它能够辅助调度人员迅速制定最优抢修 方案,根据故障位置、类型以及周边抢修资源的分布情 况, 合理调配人力、物力资源。通过优化抢修流程, 缩 短抢修时间,最大限度减少停电对用户的影响,有效提 升了运检管理的规范性和高效性, 为配电网络的安全稳 定运行提供了坚实保障。

3 配电运检管理的核心措施

3.1 完善巡检制度与策略

在配电线路运维管理中,完善巡检制度与策略是保障线路安全稳定运行、及时发现并消除潜在隐患的重要环节。(1)应建立差异化的巡检机制。充分考虑线路的重要程度、运行环境以及设备状态等多方面因素,科学合理地制定巡检周期和具体内容。对于承担重要负荷的线路、运行年限较长的老旧线路以及故障频发区域,要适当增加巡检频次,以便更及时地掌握线路状况,预防故障发生。(2)在巡检方式上,采用"人工巡检+无人机巡检+在线监测"相结合的综合模式。人工巡检能够凭借巡检人员的专业经验和细致观察,重点检查设备的细节状态,如绝缘子的破损、导线的连接情况等;无人

机巡检则可以快速覆盖大范围的线路通道,高效检查线路周边的树障、违章建筑等影响线路安全运行的因素;在线监测则可实时跟踪线路的关键参数,如温度、负荷等,实现对线路状态的连续监测。通过这三种方式的有机结合,形成全方位、无死角的巡检体系。(3)还需规范巡检记录与反馈流程。巡检人员要详细、准确地记录巡检过程中发现的问题,并及时将隐患信息录入系统。相关部门要对录入的信息进行跟踪处理,形成闭环管理,确保每一个隐患都能得到妥善解决,从而有效提升配电线路的运维水平^[3]。

3.2 强化设备全生命周期管理

在配电线路运维工作中,强化设备全生命周期管理 是保障线路可靠运行、降低故障发生率的关键举措,需 从设备选型、安装、运行直至退役的各个环节进行全面 把控。(1)在设备选型阶段,应秉持科学严谨的态度, 优先挑选可靠性高、抗老化、防腐蚀性能优异的设备。 例如,选用硅橡胶绝缘子,其具备良好的憎水性和耐污 闪能力,能有效适应复杂多变的运行环境;采用铠装 电缆,可增强电缆的机械防护性能,减少外力破坏的风 险。(2)设备安装过程中,必须严格执行既定的工艺标 准,尤其要加强对接头压接、绝缘处理等关键环节的质 量管控。确保接头压接牢固、接触良好, 避免因接触电 阻过大引发发热问题; 做好绝缘处理, 防止设备在运行 过程中出现漏电现象,保障线路的安全运行。(3)设 备投入运行后,要定期开展预防性试验,如绝缘电阻测 试、接地电阻测量等。通过这些试验,能够及时发现设 备潜在的缺陷和隐患,以便采取针对性的维护措施,将 故障消除在萌芽状态。(4)对于达到使用寿命或性能 无法满足运行要求的设备,要及时安排更换,杜绝设备 "带病运行",从而确保配电线路始终处于良好的运行 状态,提高供电的可靠性和稳定性。

3.3 应急抢修体系建设

在配电线路运维管理里,构建完善的应急抢修体系是保障电网在突发故障时能快速恢复供电、减少停电损失的重要支撑。(1)要建立快速响应的应急抢修机制,

组建一支专业素质过硬、技术精湛的抢修队伍。这支队 伍需具备丰富的故障处理经验和快速解决问题的能力, 能够随时应对各类突发状况。同时,要配备充足且完备 的抢修物资和装备,像应急电源车能在主电源故障时及 时提供临时电力支持:绝缘手套可保障抢修人员在带电 作业时的人身安全; 断线接续工具能高效完成导线断裂 后的连接工作,确保抢修工作顺利开展。(2)制定详细 且全面的故障抢修预案至关重要, 预案要明确不同故障 类型的处理流程,从故障发现、信息上报、现场勘查, 到抢修方案制定、实施及后续验收等各个环节都要清晰 界定。同时, 合理划分责任分工, 确保每个岗位的人员 都清楚自己的职责。定期组织抢修人员开展演练,通过 模拟真实故障场景,提高他们的协同作战能力和应急处 理水平。(3)加强与气象部门的联动合作,提前获取极 端天气预警信息。根据预警情况,提前做好抢修准备工 作, 合理调配抢修资源, 从而在故障发生时能够迅速响 应,缩短故障恢复时间,保障配电线路的稳定运行。

结束语

配电线路的安全稳定运行关乎供电的可靠性与质量。自然因素、设备自身问题以及外力破坏与人为因素等,是引发线路故障的常见成因。配电自动化在故障处理与运检中发挥着关键作用,从故障定位隔离、状态监测预警到运检流程智能化管控,全方位提升了运维效率与水平。而完善巡检制度与策略、强化设备全生命周期管理以及构建应急抢修体系等核心管理措施,则为线路稳定运行筑牢了坚实防线。未来,需持续优化各项技术与措施,不断提升应对故障的能力,适应电网发展需求,为保障电力供应的稳定性和安全性提供更有力的支撑。

参考文献

- [1]王伟忠,莫晨.配网配电线路的常见故障分析与运检管理[J].军民两用技术与产品,2019(22):168-194.
- [2]蔡明宪.配电线路常见故障及其原因与运检管理分析[J].山东工业技术,2019(02):173-182.
- [3]周俊良.配电线路常见故障及配电运检管理措施[J]. 科技风,2020(03):180-181.