工民建混凝土结构工程施工裂缝处理对策

赵 帅 李松林 岳轩轩 中国水利水电第十一工程局有限公司 河南 三门峡 472000

摘 要:本文聚焦工民建混凝土结构工程施工裂缝问题,介绍常见裂缝类型,包括收缩、温度、荷载和变形裂缝,并从材料、施工、设计三方面分析裂缝产生原因。针对裂缝处理,提出表面修补、灌浆、结构加固、混凝土置换等对策,同时给出优化设计、严控材料质量、规范施工过程、加强监测与维护等预防措施,旨在为处理和预防裂缝提供参考。

关键词:工民建混凝土;结构工程;裂缝处理对策

1 工民建混凝土结构工程施工常见裂缝类型

1.1 收缩裂缝

收缩裂缝在工民建混凝土结构中极为常见。混凝土在硬化过程中,水分会逐渐蒸发,导致体积收缩。当这种收缩受到约束时,就会产生拉应力,当拉应力超过混凝土的抗拉强度时,便会出现收缩裂缝。塑性收缩裂缝通常出现在混凝土浇筑后的几小时内,此时混凝土尚处于塑性状态,表面水分蒸发过快,产生急剧的体积收缩,而内部混凝土变化较小,表面受到内部混凝土的约束,从而产生裂缝。这种裂缝一般较短且较细,呈不规则分布。干燥收缩裂缝则是在混凝土硬化后,随着水分的持续散失而逐渐形成。其裂缝宽度较细,走向纵横交错,没有明显规律,多出现在结构表面。

1.2 温度裂缝

温度变化是引发混凝土结构裂缝的另一重要因素。 混凝土具有热胀冷缩的性质,当结构内部温度与外部环境温度存在差异时,就会产生温度应力。在施工过程中,水泥水化会释放大量热量,使混凝土内部温度升高,而表面温度相对较低,内外温差导致温度应力,当应力超过混凝土抗拉强度时,就会产生温度裂缝。在大体积混凝土结构中,这种温度裂缝尤为明显[1]。季节交替、昼夜温差变化等也会使混凝土结构产生温度裂缝。温度裂缝的宽度和长度因温度变化幅度和结构约束情况而异,一般宽度较宽,走向可能有一定规律,与温度梯度方向相关。

1.3 荷载裂缝

荷载裂缝是由于混凝土结构承受的荷载超过其设计 承载能力而产生的。在工民建中,结构在使用过程中会 承受各种静荷载和动荷载,如建筑物的自重、使用过程 中的活荷载、风荷载、地震作用等。当这些荷载作用在 混凝土结构上,使结构产生的应力超过混凝土的抗拉或 抗压强度时,就会引发裂缝。荷载裂缝通常出现在结构的受力较大部位,如梁的跨中、支座附近,柱的上下端等。其裂缝走向与主应力方向垂直,宽度和长度与荷载大小和作用时间有关,荷载越大、作用时间越长,裂缝越严重。

1.4 变形裂缝

变形裂缝主要由结构的不均匀变形引起。例如,地基不均匀沉降会导致建筑物上部结构产生附加应力,当附加应力超过混凝土结构的抗裂能力时,就会在结构中产生裂缝。这种裂缝一般与地基沉降的分布和大小有关,多出现在建筑物底层墙体、柱根部等与地基接触的部位,裂缝走向多呈倾斜状。此外,结构构件的变形不协调也可能引发变形裂缝,如不同材料构件之间的变形差异,由于它们的线膨胀系数不同,在温度变化或荷载作用下会产生不同的变形,从而在连接部位产生裂缝。

2 工民建混凝土结构工程施工裂缝产生原因

2.1 材料因素

材料质量对混凝土结构裂缝的产生有着重要影响。 水泥的品种和性能是关键因素之一,不同品种的水泥水 化热不同,如普通硅酸盐水泥水化热较高,在大体积 混凝土中使用时,容易导致内部温度升高,产生温度裂 缝。骨料的质量也不容忽视,骨料的粒径、级配、含泥 量等都会影响混凝土的性能。如果骨料粒径过小、级配 不良,会增加混凝土的性能。如果骨料粒径过小、级配 不良,会增加混凝土的用水量,从而增大收缩;含泥量 过高会降低混凝土的强度和抗裂性。外加剂和掺合料的 选择和使用不当也可能引发裂缝。例如,某些外加剂的 掺量过多或与水泥适应性不好,会导致混凝土凝结时间 异常、收缩增大等问题,进而产生裂缝^[2]。

2.2 施工因素

施工过程中的诸多环节都可能导致混凝土结构裂缝的产生。混凝土浇筑时,如果振捣不密实,会使混凝土

内部存在孔洞和疏松部位,降低混凝土的强度和密实性,容易产生裂缝。浇筑顺序不当也可能引起结构应力分布不均,导致裂缝出现。混凝土养护是保证混凝土性能的重要环节,如果养护不及时或养护方法不当,如养护时间不足、覆盖不严密等,会使混凝土表面水分散失过快,产生收缩裂缝。施工过程中的模板拆除过早也是一个常见问题,模板拆除过早会使混凝土结构尚未达到足够的强度就承受荷载,容易引发裂缝。钢筋的施工质量也会影响混凝土结构的抗裂性,如钢筋的间距不均匀、保护层厚度不足等,都会降低钢筋对混凝土的约束作用,增加裂缝产生的可能性。

2.3 设计因素

设计方面的不足也是混凝土结构裂缝产生的原因之一。结构设计不合理,如结构构件的截面尺寸过小、配筋不足等,会使结构的承载能力和抗裂能力降低,在荷载作用下容易产生裂缝。设计中对结构所处环境和使用条件的考虑不周全,也会导致裂缝问题。比如,在寒冷地区,如果对结构的抗冻设计不足,混凝土在冻融循环作用下容易产生裂缝;在腐蚀环境中,如果对结构的耐久性设计不够,混凝土会受到化学侵蚀而开裂。

3 工民建混凝土结构工程施工裂缝处理对策

3.1 表面修补法

表面修补法作为简单且常用的裂缝处理手段,主要针对那些对结构承载能力影响微乎其微的表面裂缝和浅层裂缝。在众多建筑场景中,这类裂缝虽不影响整体安全,却影响美观与防渗防漏性能。该方法核心是在裂缝表面涂抹修补材料,像水泥砂浆、环氧胶泥等都是常用之选。施工时,先要对裂缝表面精心处理,用专业工具彻底清除灰尘、油污和松散颗粒,让表面平整、干净且粗糙,如此能极大增强修补材料与混凝土表面的粘结力,确保修补效果。接着按特定比例调配修补材料,均匀涂抹在裂缝表面,涂抹厚度一般控制在1-2mm。若裂缝较宽,可先填充细石混凝土或砂浆,再表面涂抹修补。此方法优势明显,操作简单、成本低廉,能在短时间内恢复结构外观。不过,它也存在局限,只能处理表面问题,对于裂缝内部的结构性隐患无能为力,所以适用于对结构安全要求不高、仅需改善表面状况的裂缝处理场景。

3.2 灌浆法

灌浆法是通过压力设备将浆液精准注入裂缝内部, 待浆液凝固硬化,实现修复裂缝、恢复结构整体性的目标。它尤其适用于处理较深、较宽的裂缝,以及对结构 强度和耐久性有高要求的裂缝。常用的灌浆材料有水泥 浆和化学浆液等。水泥浆强度高、成本低,但流动性欠 佳,在复杂裂缝中填充效果可能不理想;化学浆液则流动性与粘结性俱佳,能深入裂缝各个角落,更好填充,但成本相对较高。施工时,先对裂缝细致清理和封缝,防止浆液外流造成浪费和污染。随后安装灌浆嘴,利用压力设备将浆液缓缓注入裂缝。待浆液充满裂缝并凝固后,拆除灌浆嘴,对表面进行平整处理。灌浆法能有效修复裂缝,提升结构强度与耐久性,让结构恢复良好的使用性能。

3.3 结构加固法

当裂缝对结构承载能力产生较大影响时,结构加固法就成为增强结构强度和稳定性的关键手段。常见方法有增大截面加固法、粘贴钢板加固法、碳纤维加固法等。增大截面加固法通过在原结构构件表面增加混凝土和钢筋,扩大截面尺寸,提升承载能力,适用于梁、板、柱等构件加固,施工工艺相对简单,但会增加结构自重、占用空间^[3]。粘贴钢板加固法是将钢板用结构胶粘贴在构件表面,使钢板与构件共同受力,提高抗弯、抗剪能力,施工速度快、对原结构影响小,不过钢板易锈蚀,需做好防腐。碳纤维加固法利用碳纤维布高强度特性,粘贴在构件表面,提升承载能力和抗裂性能,具有重量轻、强度高、耐腐蚀等优点,但成本较高。选择哪种加固方法,需综合考虑结构特点、裂缝情况、成本预算等因素,确保加固效果达到预期,保障结构安全。

3.4 混凝土置换法

混凝土置换法是针对混凝土严重损坏、裂缝较多且较深部位的有效修复方法,旨在恢复结构的完整性和使用功能。施工时,首先要精准确定需要置换的范围,使用专业工具将损坏的混凝土凿除至坚实的基层,并彻底清理干净,保证置换区域的整洁与坚实。接着对新旧混凝土接触面进行特殊处理,涂刷界面剂,这一步骤至关重要,它能显著增强新旧混凝土的粘结力,确保两者紧密结合,共同受力。最后按照设计要求精心浇筑新的混凝土或砂浆,浇筑过程中要注意振捣密实,避免出现空洞等缺陷。浇筑完成后,进行科学合理的养护,让新混凝土或砂浆充分硬化,达到设计强度。混凝土置换法能有效修复严重损坏的混凝土结构,但施工难度较大,对施工人员的技术水平和施工质量控制要求极高,只有严格把控每个环节,才能确保新旧混凝土良好结合,恢复结构的正常使用功能。

4 工民建混凝土结构工程施工裂缝预防措施

4.1 优化设计

在混凝土结构的结构设计阶段,需全面且深入地考 量各种可能影响裂缝产生的因素,开展科学合理的优化 设计工作。结构构件的截面尺寸与配筋情况,直接关 系到结构的承载能力和抗裂能力。比如,对于梁和柱这 类关键构件,要依据其实际的受力特点以及所承受的荷 载状况,精准地确定合适的截面尺寸与配筋率。若截面 尺寸设计得过小,或者配筋不足,在荷载作用下,结构 就极易出现裂缝。同时,结构所处的环境和使用条件也 不容忽视。在寒冷地区,低温会使混凝土内部水分结冰 膨胀,从而破坏混凝土结构,因此要采取有效的抗冻设 计措施,像适当增加混凝土保护层厚度,选用抗冻性能 优良的混凝土材料等。而在腐蚀环境中,结构的耐久性 面临挑战,应选用耐腐蚀的材料,并采用合理的构造措 施,提升结构的抗腐蚀能力。优化结构布局也至关重 要,不合理的布局会导致结构出现应力集中现象,增加 裂缝产生的风险。通过科学合理的布局设计, 使结构受 力均匀,可有效减少裂缝产生的可能性,保障结构的安 全与稳定。

4.2 严格控制材料质量

材料质量是保障混凝土结构质量的根基,必须严格 把控。在水泥的选用上,要紧密结合工程特点和具体要 求,挑选合适品种和强度等级的水泥。同时,对水泥 的质量要严格检验,确保其各项性能指标都符合标准要 求,如凝结时间、强度等。对于骨料,要严格把控其粒 径、级配和含泥量等关键指标。优先选用质地坚硬、级 配良好的骨料,这样的骨料能使混凝土更加密实,提高 混凝土的强度和耐久性。外加剂和掺合料的选择和使用 也不容马虎。要根据混凝土的性能要求和施工条件,通 过严谨的试验来确定合适的品种和掺量,并保证其质量 稳定可靠。材料进场时,要严格按照检验批进行细致检 验,只有检验合格的材料才能投入使用,坚决杜绝不合 格材料进入施工现场。另外,还要做好材料的储存和管 理工作, 为材料提供适宜的储存环境, 防止材料受潮、 变质等问题影响混凝土质量, 从源头上保障混凝土结构 的质量。

4.3 规范施工过程

施工过程的规范化是预防混凝土结构裂缝的重中之重。在混凝土浇筑前,要精心制定详细的施工方案,明确浇筑顺序、振捣方法、养护措施等关键环节。浇筑过程中,必须严格按照方案进行操作,确保混凝土振捣密实,避免出现漏振导致混凝土不密实,或过振造成混凝土离析等问题。同时要合理控制混凝土的浇筑速度和高度,防止混凝土在浇筑过程中产生离析现象,影响混凝

土的质量。混凝土养护是关键的一环,要根据不同的环境条件和混凝土性能要求,制定科学合理的养护方案,确保混凝土在养护期间保持适宜的湿度和温度,促进混凝土强度的正常增长^[4]。模板拆除要严格按照设计要求和规范规定的时间进行,过早拆模会使结构尚未达到足够的强度,容易导致结构受损,引发裂缝,钢筋施工的质量控制也不容忽视,要确保钢筋的间距、保护层厚度等严格符合设计要求,提高钢筋与混凝土的协同工作能力,共同抵御外力,减少裂缝的产生。

4.4 加强施工监测与维护

在混凝土结构施工过程中,加强对结构的监测是及时发现和处理问题的重要手段。通过设置沉降观测点、应力监测点等,定期对结构进行全面的观测和检测,能够及时掌握结构的变形和应力变化情况。一旦发现异常情况,要迅速分析原因,并采取有效的措施进行处理。同时,施工环境的监测也必不可少。温度、湿度等环境因素对混凝土结构的性能有着重要影响,要根据环境变化及时调整施工措施。比如,在高温天气下,要采取降温措施,防止混凝土因水分蒸发过快而产生裂缝;在低温环境下,要做好保温措施,避免混凝土受冻。在结构施工完成后,还要进行定期的维护和检查,建立完善的维护管理制度,及时发现和处理潜在的问题,确保混凝土结构在长期使用过程中保持安全和稳定,延长结构的使用寿命。

结束语

工民建混凝土结构工程施工裂缝处理至关重要,关乎工程质量和结构安全。通过了解常见裂缝类型与成因,采取针对性处理对策,能有效修复裂缝,恢复结构性能。同时,实施有效的预防措施,可降低裂缝产生几率。在实际工程中,需综合运用这些方法,严格把控各环节,保障工民建混凝土结构工程的质量与安全,延长其使用寿命。

参考文献

[1]苏青.工民建混凝土结构工程施工裂缝处理分析[J]. 住宅与房地产,2021,(09):201-202.

[2]于建伟.工民建混凝土结构工程施工裂缝处理分析 [J].工民建工程与管理,2021,3(4):3-4.

[3]王亚生.工业与民用建筑工程混凝土结构裂缝处理技术分析[J].中国建筑装饰装修,2024,(12):146-148.

[4]王晓林.某高层建筑墙体裂缝成因分析及探讨[J].太原学院学报(自然科学版),2024,42(02):46-49.