炉排运动参数对垃圾焚烧过程中热解特性的影响研究

姜为荣 汪 啸 丁 一 陈政旭 龙文萱 华能国际电力江苏能源开发有限公司南京电厂 江苏 南京 210035

摘 要:本文研究了炉排运动参数对垃圾焚烧过程中热解特性的影响,介绍了垃圾热解的基本原理、评价指标及炉排在焚烧中的作用。详细阐述了炉排速度、间隙、倾角等关键参数的种类与作用机制。通过实验设计与数值模拟,分析了不同炉排运动参数对热解特性的具体影响。结果表明,合理的炉排速度、间隙和倾角能够显著提升垃圾的热解效率,优化产物分布。此外,多参数耦合作用对热解特性的影响也进行了探讨,为垃圾焚烧炉排的优化设计提供了理论依据和技术支持。

关键词: 垃圾焚烧; 炉排运动参数; 热解特性的影响

1 垃圾焚烧热解特性相关理论

1.1 垃圾热解的基本原理

垃圾热解是指在无氧或缺氧的条件下,垃圾中的有机成分在高温作用下发生分解反应,生成气体、液体和固体等产物的过程。这一过程涉及复杂的物理和化学变化,包括大分子有机物的断裂、重组等。在热解过程中,温度是关键因素。随着温度的升高,垃圾中的有机成分首先经历脱水和干燥阶段,随后大分子有机物开始分解。不同的有机成分在不同温度区间会发生不同的反应,例如纤维素在200-300℃开始分解,半纤维素在220-315℃分解,木质素则在250-500℃分解。热解过程不需要氧气参与,因此可以减少氮氧化物等污染物的生成。同时,热解产生的气体和液体产物还可以作为能源进行回收利用,具有较好的环保和经济价值。

1.2 热解特性的评价指标

热解特性的评价指标主要包括热解温度、热解产物分布、热解速率和活化能等。热解温度是指垃圾热解反应进行的温度范围,不同的垃圾成分对应不同的热解温度区间,它直接影响热解反应的程度和产物类型。热解产物分布是指热解产生的气体、液体和固体产物的比例。气体产物主要包括甲烷、氢气、一氧化碳等,液体产物主要是焦油等,固体产物主要是焦炭。产物分布会因垃圾成分和热解条件的不同而发生变化,合理的产物分布有利于提高能源回收效率。热解速率是指单位时间内垃圾分解的量,它反映了热解反应的快慢。活化能则是衡量热解反应难易程度的指标,活化能越低,热解反应越容易进行[1]。

1.3 炉排在垃圾焚烧中的作用

炉排在垃圾焚烧过程中起着承载、输送和翻动垃圾 的重要作用。它将垃圾从进料口输送到炉膛内的不同区 域,使垃圾能够依次经历干燥、热解、燃烧和燃尽等阶段。通过炉排的运动,垃圾可以被均匀翻动,使其与高温烟气充分接触,保证垃圾受热均匀,提高热解和燃烧效率。同时,炉排的运动还能及时排出焚烧产生的灰烬,为新进入的垃圾腾出空间。炉排的结构和运动参数直接影响垃圾在炉内的停留时间、混合程度和受热情况,进而对垃圾的热解特性产生显著影响。因此,研究炉排运动参数对热解特性的影响具有重要意义。

2 炉排运动参数的种类与作用机制

2.1 炉排速度

炉排速度指的是炉排在单位时间内所移动的距离,这一参数对垃圾在炉内的停留时间起着决定性作用。若炉排速度过快,垃圾在炉内匆匆而过,停留时间大幅缩短,热解反应无法充分进行,焚烧效率大打折扣,未燃尽的垃圾增多,排放量也随之上升,既浪费资源又污染环境。反之,炉排速度过慢,垃圾长时间滞留炉内,会使炉膛内温度持续攀升,过高温度可能损坏炉排及其他设备,缩短其使用寿命,而且为了维持高温需消耗更多能源,增加运行成本。因此,只有选择合理的炉排速度,才能确保垃圾在各个阶段都有恰到好处的时间进行反应,实现充分热解和高效燃烧。

2.2 炉排间隙

炉排间隙即相邻炉排片之间的距离,它对垃圾的透气性和灰烬排出有着重要影响。合适的炉排间隙能保证空气顺畅地进入炉膛,为垃圾的热解和燃烧提供充足的氧气,促进反应充分进行,同时也有利于灰烬顺利排出。若炉排间隙过小,空气流通受阻,垃圾会因缺氧而热解和燃烧不完全,产生大量一氧化碳等有害气体,污染空气。而间隙过大,细小的垃圾颗粒容易从间隙漏落,造成物料损失,降低资源利用率,还会影响炉膛内

温度分布的均匀性,进而影响热解和燃烧效果。

2.3 炉排倾角

炉排倾角是炉排与水平面所形成的夹角,它借助重力作用影响垃圾的输送速度和在炉排上的分布情况。当炉排倾角较大时,垃圾在重力作用下会快速移动,停留时间缩短,可能导致热解和燃烧不充分。相反,较小的倾角会使垃圾移动缓慢,停留时间延长,但若停留时间过长,也可能引发局部过热等问题^[2]。此外,炉排倾角还会影响垃圾在炉排上的堆积厚度,合理的倾角能使垃圾均匀分布,避免局部堆积过厚导致氧气供应不足,或过薄影响反应效率,从而保证热解和燃烧过程稳定进行。

2.4 其他相关参数

除了炉排速度、间隙和倾角外,还有一些其他相关 参数也会对垃圾的热解过程产生影响。比如炉排的振动 频率,适当的振动可以辅助垃圾翻动和输送,增强垃圾 之间的混合程度,使反应更加均匀充分。各段炉排的速 度配比也至关重要,由于垃圾在不同阶段的反应需求不 同,通过合理调整各段炉排的速度,能够精准控制垃圾 在各段的停留时间,优化热解和燃烧效果。例如,在热 解阶段可适当降低速度,延长停留时间,确保有机物充 分分解;在燃烧阶段则可提高速度,提高燃烧效率。

3 炉排运动参数对热解特性影响的实验设计与模拟

3.1 实验平台搭建与参数设置

为深入探究炉排运动参数对热解特性的影响, 我们 精心搭建了以小型垃圾焚烧模拟炉为核心的实验平台。 该炉体设计精巧,集成了进料系统、炉排系统、加热 系统、测温系统以及气体收集系统等多个关键部分。其 中,炉排系统尤为关键,采用了可调节参数的往复式炉 排,能够精确控制炉排速度、间隙和倾角等核心参数, 为实验提供了灵活多变的操作条件。实验所用垃圾样品 取自城市生活垃圾,经过严格的破碎、筛分等预处理流 程,确保选取的粒径较为均匀的部分作为实验物料,以 减少物料差异对实验结果的影响。在实验过程中, 我们 设置了不同的炉排速度(0.5m/min、1.0m/min、1.5m/ min)、炉排间隙(5mm、10mm、15mm)和炉排倾角 (10°、15°、20°),同时保持其他实验条件如炉膛温 度、空气供应量等的一致性。通过测温系统实时监测垃 圾热解过程中的温度变化,利用气体收集系统精准收集 热解产生的气体产物,并采用气相色谱仪等先进设备对 气体成分进行细致分析,同时对热解后的固体残渣进行 称重和成分分析,以全面评估热解特性。

3.2 数值模拟模型的建立

为了更深入地理解炉排运动参数对热解特性的影响

机制,我们基于计算流体力学(CFD)软件,精心构建 了垃圾焚烧热解过程的数值模拟模型。该模型不仅考虑 了垃圾的热解反应动力学特性,还充分融入了传热传质 过程以及炉排运动对垃圾流动的影响, 实现了对热解过 程的全面模拟。在建模过程中,首先根据实验平台的实 际结构参数,建立了精确的几何模型,并进行细致的网 格划分,以确保模拟的准确性和高效性[3]。接着,设置了 垃圾的物理性质参数(如密度、比热容、导热系数等) 和热解反应动力学参数(如反应级数、频率因子、活化 能等),这些参数均通过实验测定或文献参考获得,保 证了模型的可靠性。特别地,在模型中,通过编写用户 自定义函数(UDF)来模拟炉排的运动,包括炉排速 度、倾角等参数的变化, 使得模拟更加贴近实际工况。 在模拟过程中,密切监测垃圾的温度分布、热解产物分 布以及速度场等信息,并将模拟结果与实验数据进行对 比分析, 以验证模型的准确性, 为后续的优化和改进提 供有力支持。

4 不同炉排运动参数对热解特性的影响分析

4.1 炉排速度对热解特性的影响

炉排速度是影响垃圾热解特性的关键参数之一,其 变化直接决定了垃圾在炉内的停留时间, 进而影响热解 反应的深度与产物分布。当炉排速度设定为0.5m/min时, 垃圾在炉内停留时间较长, 为热解反应提供了充足的时 间条件。在此工况下, 热解温度峰值较高, 垃圾中的有 机成分得以充分分解, 气体产物中可燃气体(如甲烷、 氢气)的含量显著提升,同时固体残渣的产率较低,表 明热解反应较为彻底。然而,过长的停留时间也带来负 面效应,即炉膛内温度持续偏高,可能导致部分气体产 物发生二次分解,不仅降低了可燃气体的收率,还增加 了额外的能耗。相反, 当炉排速度提升至1.5m/min时, 垃 圾停留时间大幅缩短, 热解反应因时间不足而显得不够 充分。此时, 热解温度峰值较低, 气体产物中可燃气体 含量明显减少,固体残渣中则残留了较多未燃尽的有机 成分,整体热解效率显著下降。综合比较发现,当炉排 速度控制在1.0m/min时,垃圾热解过程既能够保证足够的 反应时间以实现较为完全的热解,又能避免因停留时间 过长而引发的负面效应, 热解温度和产物分布均处于较 为合理的状态, 因此整体热解效果最佳。

4.2 炉排间隙对热解特性的影响

炉排间隙作为影响炉内气体流通与垃圾热解环境的 重要因素,其大小对热解特性具有显著影响。当炉排间 隙设置为5mm时,空气进入炉膛的阻力显著增大,导致 垃圾处于相对缺氧的状态。在此条件下,热解反应因氧 气供应不足而不够完全,产生大量的一氧化碳和焦油等中间产物,同时固体残渣中的碳含量也相对较高,表明有机成分未得到充分分解。当炉排间隙扩大至15mm时,虽然空气供应变得充足,有利于热解反应的进行,但部分细小垃圾颗粒容易从间隙漏落,造成物料损失,并影响炉膛内温度的均匀分布,进而导致热解产物的稳定性变差。而当炉排间隙设定为10mm时,空气流通顺畅,垃圾能够充分接触氧气,热解反应得以较为完全地进行[4]。此时,气体产物中二氧化碳含量增加,表明有机成分得到了更充分的氧化分解,同时一氧化碳和焦油含量减少,热解效果达到理想状态。因此,10mm的炉排间隙被认为是较为优化的选择。

4.3 炉排倾角对热解特性的影响

炉排倾角通过影响垃圾在炉排上的移动速度和堆积厚度,进而对热解特性产生重要作用。当炉排倾角设置为10°时,垃圾移动速度较慢,停留时间较长,为热解反应提供了充分的时间条件。然而,垃圾在炉排上的堆积厚度较大,不利于热量的快速传递,导致热解温度上升较慢,可能影响热解反应的效率。当炉排倾角增大至20°时,垃圾移动速度显著加快,停留时间缩短,热解反应因时间不足而显得不够充分。同时,垃圾分布不均匀的问题也更为突出,容易出现局部过热现象,对炉膛结构和热解产物质量均产生不利影响。而当炉排倾角设定为15°时,垃圾在炉排上的移动速度和堆积厚度均处于较为适中的状态,既保证了足够的停留时间以实现较为完全的热解,又避免了因堆积过厚而导致的热量传递不畅问题。此时,热解温度分布均匀,热解产物的产率和成分均较为合理,因此15°的炉排倾角被认为是较为优化的选择。

4.4 多参数耦合作用对热解特性的影响

在实际运行中,炉排运动参数往往不是独立作用的,而是相互耦合、共同影响热解特性。多参数耦合作

用使得热解特性的变化更为复杂多样。例如,当炉排速度、间隙和倾角分别设定为1.0m/min、10mm和15°时,各参数之间相互配合,垃圾在炉内的停留时间、透气性和受热情况均达到最佳状态,从而实现了最高的热解效率和最合理的产物分布。然而,如果参数组合不当,如炉排速度过快而间隙过小,则会导致垃圾热解不充分且缺氧严重,降低热解效率;或者炉排倾角过大而速度过慢,则会使垃圾在某一区域停留时间过长,造成局部过热,影响炉膛结构和热解产物质量。因此,在实际运行中,需要对各炉排运动参数进行综合优化,通过试验或模拟手段寻找最佳参数组合,以获得最佳的热解效果。这要求操作人员具备丰富的经验和专业知识,能够根据实际情况灵活调整参数,确保垃圾焚烧过程的稳定高效运行。

结束语

本研究通过理论分析与实验模拟相结合的方法,深 入探究了炉排运动参数对垃圾焚烧热解特性的影响,取 得了阶段性成果。未来研究可进一步细化炉排运动参数 的优化范围,探索更多参数间的耦合效应。同时,加强 垃圾焚烧过程中的污染控制,提高资源回收利用率,对 于推动垃圾焚烧技术的可持续发展具有重要意义。

参考文献

[1]黄坚,灌南县城乡生活垃圾焚烧发电项目烟气净化工艺设计[J].中国资源综合利用,2020,38(8):177-179.

[2]田艺.一种垃圾焚烧炉排炉炉排运行装置[J].科学技术创新,2021(23):153-154.

[3]田云.基于DCS的垃圾焚烧炉排炉自动燃烧控制系统设计研究[J].机电产品开发与创新,2020,33(04):56-57.

[4]吴浩,乔克非,刘晰,沈竑,吴燕琦.垃圾焚烧机械炉排产品的开发及应用[J].能源与节能,2020(03):55-57+80.