城市生活污水处理及环境保护措施探析

薛 凯

中智西安经济技术合作有限公司 陕西 西安 710000

摘 要: 我国城市生活污水处理现状呈现区域差异,东部地区设施先进、处理率高,中西部欠发达地区则设施滞后、污染严重。同时,污水管网建设不完善,存在覆盖不足、老化及雨污分流不彻底等问题。污水处理技术虽取得进步,但与国际先进水平有差距,部分技术落后且污泥处置不当。为此,需加强监督管理,提高公众环保意识与参与度,并推进资源循环利用,包括水的循环利用、能源回收及污泥资源化处理,以提升污水处理效能,实现环境可持续发展。

关键词:城市生活污水;污水处理技术;环境保护;措施

引言:随着城市化进程的加快,城市生活污水排放量与日俱增,其处理与环境保护成为城市可持续发展的关键挑战。当前,我国城市生活污水处理存在显著区域差异,东部地区设施完备、处理高效,而中西部欠发达地区则面临设施滞后、排放超标等困境。同时,污水管网建设不完善、处理技术水平有待提升等问题,进一步制约了污水处理效能。为应对这些挑战,需综合运用物理、化学、生物等多元处理技术,并加强监督管理、提高公众环保意识、推进资源循环利用。本文旨在系统分析城市生活污水处理现状,探讨有效处理技术与环境保护措施,为提升我国城市污水处理水平、实现环境可持续发展提供参考。

1 城市生活污水处理现状分析

1.1 污水处理效率区域差异显著

我国污水处理效率呈现出极为明显的区域差异特征。(1)在东部经济发达地区,得益于较强的经济实力和较高的环境重视程度,污水处理设施建设完备且先进。这些地区不仅拥有大规模、现代化的污水处理厂,还配备了完善的污水收集管网系统,使得污水处理率普遍能够维持在95%以上。同时,先进的处理工艺和严格的管理措施,也确保了出水水质稳定符合国家标准,有效减少了对水环境的污染。(2)中西部欠发达地区,特别是中小城市和乡镇,情况则不容乐观。由于经济发展水平相对较低,资金投入严重不足,加之技术人才匮乏、技术引进与应用滞后,污水处理设施建设明显滞后于实际需求。部分地区的污水处理率不足60%,甚至存在大量区域尚未建设污水处理设施,导致大量未经处理的污水直接排放,对当地的水环境造成了严重污染,制约了区域经济的可持续发展和生态环境的改善。

1.2 污水管网建设不完善

污水管网作为污水收集与输送的关键核心设施,其建设质量与覆盖范围对污水处理效率起着决定性作用。当前,部分城市在污水管网建设方面存在诸多突出问题。(1)管网覆盖存在明显不足。在老旧城区以及城乡结合部等区域,由于历史规划遗留问题或建设资金有限等原因,大量区域尚未铺设污水管网。这使得这些地区产生的污水无法被有效纳入集中处理系统,只能随意排放,对周边环境造成污染。(2)管网老化现象极为严重。早期建设的污水管网,因使用年限较长,出现了不同程度的腐蚀、破损等情况。这不仅导致污水在输送过程中发生泄漏,污染土壤和地下水,还影响了管网的整体输送能力。(3)雨污分流改造不彻底。部分城市在雨污分流方面工作不到位,雨季时雨水与污水混合排放,极大地增加了污水处理厂的运行负荷,甚至可能引发污水溢流,对自然水体造成严重污染。

1.3 污水处理技术水平有待提升

我国污水处理技术近年来虽取得了一定进步,但与国际先进水平相比,仍存在较为明显的差距。(1)部分污水处理厂所采用的技术较为落后,在处理污水时,对氦、磷等关键污染物的去除效果不佳,导致出水水质难以稳定达到严格的环保标准要求。在处理过程中,这些落后技术还普遍存在能源消耗过高的问题,同时资源回收率却极低,仅仅只能实现污水达标排放这一基本目标,未能充分挖掘污水处理过程中水资源与能源的回收潜力,造成大量资源的浪费。(2)污泥处置环节的技术短板也十分突出。许多污水处理厂对污泥处置不当,采用随意堆放或简单填埋的方式处理污泥,使得污泥中的有害物质逐渐渗透到土壤和地下水中,对周边生态环境形成了二次污染,进一步加剧了环境治理的难度和压力。

2 城市生活污水处理技术

2.1 物理处理技术

物理处理技术是污水处理流程中的预处理关键环 节,主要借助物理作用实现悬浮固体、漂浮物与污水的 分离,整个过程不改变污染物的化学性质。常用的物理 处理技术涵盖格栅、沉砂池和沉淀池。(1)格栅作为污 水处理的"第一道防线",能有效拦截并去除树枝、塑 料袋等大体积杂物,防止这些杂物堵塞后续处理设备与 管道。依据格栅间隙大小,可分为粗、中、细格栅,实 际工程中通常将它们组合使用,以提升拦截效果。(2) 沉砂池的作用是去除污水中的砂粒、砾石等无机颗粒, 降低其对设备的磨损,同时减少污泥产量。其中,旋流 式沉砂池凭借占地小、分离效率高、运行成本低等优 势,在现代污水处理厂得到广泛应用。(3)沉淀池则是 利用重力沉降原理, 使污水中的悬浮颗粒下沉, 形成污 泥,从而实现污水的初步净化。根据水流方向的不同, 沉淀池可分为平流、竖流、辐流式, 分别适用于大、 中、小型污水处理厂。(4)物理处理技术具有操作简 便、成本低廉、无二次污染等优点,但局限性在于仅能 去除悬浮杂质,对于有机物、氮、磷等溶解性污染物无 能为力,因此需与其他后续处理技术配合使用[2]。

2.2 化学处理技术

化学处理技术是污水处理中极为重要的一环, 其核 心原理是通过向污水中精准投加特定药剂,借助一系列 化学反应,将污水中的污染物转化为无害物质或易于分 离的物质,以此实现污水净化的目标。常用的化学处理 技术主要包括混凝沉淀法、化学氧化法和化学除磷法。 (1) 混凝沉淀法是向污水中投加硫酸铝、聚合氯化铝 等混凝剂,这些混凝剂在水中会发生水解、聚合等反 应,生成具有强大吸附能力的絮状物。这些絮状物能够 吸附污水中的悬浮颗粒、胶体以及部分有机物,进而形 成矾花并沉淀下来,有效降低污水的浊度和化学需氧量 (COD)。该方法操作简便、成本较低,既可用于污水 的预处理阶段,也可用于深度处理环节。(2)化学氧 化法利用臭氧、过氧化氢等强氧化剂的氧化性, 将污水 中的有机物和还原性物质分解为二氧化碳、水等无害物 质。其具有氧化能力强、反应速度快、无二次污染等优 点,尤其适用于处理含有难生物降解的酚类、氰化物等 污染物的污水,但运行成本相对较高,通常需要与其他 处理技术联合使用。(3)化学除磷法通过投加石灰、 硫酸亚铁等除磷药剂, 使药剂与污水中的磷酸盐发生化 学反应, 生成不溶性沉淀, 从而有效降低污水中的磷含 量,控制水体富营养化。不过,该方法会产生大量化学 污泥,处置成本较高,且需严格控制药剂投加量,防止 出水pH值出现异常。

2.3 生物处理技术

生物处理技术是当下污水处理领域的主流技术,它 巧妙借助微生物的代谢作用,把污水中的有机物、氮、 磷等污染物转化为无害物质。该技术具有处理效率高、 运行成本低且无二次污染等诸多优势,依据微生物的呼 吸方式,可明确划分为好氧与厌氧处理技术。(1)好氧 生物处理技术是在有氧环境下展开的。好氧微生物能够 充分分解污水中的有机物,其中活性污泥法和生物膜法 是较为典型的方法。活性污泥法是将污水与含有大量微 生物的活性污泥充分混合,微生物在分解有机物的过程 中不断繁殖,之后通过沉淀实现污泥与水的分离。此方 法处理效率颇高、适用范围广泛, 但存在占地面积大、 污泥产量高以及易发生污泥膨胀等问题。生物膜法则是 利用载体表面形成的生物膜来处理污水, 生物膜能够吸 附并分解有机物,它更适用于中小型污水处理厂,具有 占地面积小、污泥产量少、运行稳定等优点,不过生物 膜更新速度较慢,处理效率容易受到水温、水质等因素 的影响。(2) 厌氧生物处理技术是在无氧环境下, 厌氧 微生物分解有机物并产生沼气。该技术适用于处理高浓 度有机废水,具有能耗低、可回收能源的特点,但反应 速度慢、周期长,对环境条件要求较为苛刻,通常多与 好氧技术联合使用,以提升整体处理效率[3]。

3 城市生活污水环境保护措施

3.1 加强监督管理力度

监督管理作为保障污水处理措施有效落地实施的关 键环节, 具有不可替代的重要作用。要构建一套健全完 善的监督机制,清晰明确环保、住建、水务等相关部门 的职责分工,强化各部门之间的协调配合与联动效能。 (1)环保部门应充分发挥专业优势,定期对污水处理厂 的出水水质展开全面、细致的监测工作。通过严格的数 据分析和比对,精准判断污水处理厂是否存在超标排放 的情况。一旦发现超标排放行为,要迅速依法依规进行 严肃查处,形成强大的监管威慑力。(2)住建部门则需 将工作重点放在污水管网的建设与维护上。要确保污水 管网覆盖范围合理、建设质量达标, 积极推进雨污分流 改造工程,从源头上减少污水对环境的污染。(3)水务 部门要切实履行对污水处理厂运营的监管职责,督促污 水处理厂严格按照相关标准规范运行,不断优化处理工 艺,提升污水处理效率,保证出水水质稳定达标。(4) 还应积极鼓励社会力量参与监督。畅通多样化的举报渠 道,设立科学合理的奖励机制,充分调动公众参与监督

的积极性,引导公众对污水直排、超标排放等违法行为 进行举报,营造全社会共同参与、共同监督的良好氛 围,形成强大的监督合力。

3.2 提高公众环保意识与参与度

公众作为生态保护领域不可或缺的重要力量,在推 动污水处理与环境保护工作中发挥着关键作用。(1) 必须通过多元化渠道全面加强环保宣传工作。充分利用 电视、广播、网络等主流媒体平台,广泛传播污水处理 的重要意义以及丰富的环保知识。精心制作具有感染力 和教育意义的公益广告,定期举办内容丰富、形式多样 的环保讲座, 向公众普及污水分类、节约用水、减少排 污等实用知识和技能, 切实增强公众的环保意识与责任 感,使其深刻认识到自身行为对环境的影响。(2)要积 极为公众参与环保创造有利条件。组织公众对污水管网 建设进行监督, 鼓励他们参与污水处理厂开放日活动, 让公众直观了解污水处理的复杂过程和显著效果,增强 对污水处理工作的理解和支持。引导公众在日常生活源 头进行减量行动,大力推广节水器具的使用,减少含磷 洗涤剂等污染物的排放,从源头上降低污水排放量和污 染物含量。此外,建立健全高效的意见反馈机制,及时 回应公众在环保方面提出的关切和问题, 让公众感受到 自己的参与能够产生实际效果,从而进一步提高公众参 与环保的积极性和主动性,形成全社会共同参与环保的 良好局面。

3.3 推进资源循环利用

资源循环利用对于提升污水处理的整体附加值、减少资源浪费具有至关重要的意义,是实现污水处理可持续发展的关键路径。(1)在水的循环利用方面,需着重加强污水处理厂出水的深度处理。通过采用先进的处理工艺和技术,使处理后的水质达到再生水标准。这些再生水具有广泛的用途,可用于城市绿化灌溉,为花草树木提供必要的水分;可用于道路清扫,保持城市环境的整洁;在工业领域,可作为冷却水用于设备降温,减少对新鲜水资源的依赖;在农业方面,可用于农田灌溉,满足农作物生长需求。通过这种方式,能够有效替代大

量的新鲜水资源,极大地缓解当前日益严峻的水资源短缺压力,提高水资源的利用效率。(2)在能源回收利用上,要充分挖掘污水中蕴含的能源潜力。厌氧处理过程中会产生沼气,这是一种宝贵的可再生能源。通过建设完善的沼气收集和利用系统,将沼气用于发电和供暖,不仅能够为污水处理厂自身提供部分能源支持,降低能耗,还能减少对外部能源的依赖,从而显著降低污水处理厂的运行成本。(3)污泥处置也是资源循环利用的重要环节。应不断优化污泥处置技术,通过厌氧消化、好氧发酵、热解等技术手段,将污泥转化为有机肥料,用于土壤改良和农业生产;也可将污泥加工成建筑材料,如砖块、水泥等,实现污泥的减量化、无害化和资源化处理,避免污泥对环境造成二次污染,推动污水处理行业向绿色、可持续方向发展[4]。

结束语

综上所述,我国城市生活污水处理虽取得一定进展,但区域效率差异、管网建设不完善、技术水平待提升等问题仍存。在处理技术上,物理、化学、生物处理技术各有优劣,需综合运用。而加强监督管理力度,可保障污水处理措施落地;提高公众环保意识与参与度,能形成全社会监督与行动合力;推进资源循环利用,则是实现可持续发展的关键。未来,需政府、企业、公众多方协同,持续优化污水处理体系,提升处理能力与资源利用率,减少污水对环境的负面影响,推动城市生态环境不断改善,实现经济与环境的协调共生、可持续发展。

参考文献

[1]杨斯杨,王洋.城市生活污水处理技术的优化与应用研究[J].皮革制作与环保科技,2024,5(13):133-135.

[2]单春博.城市生活污水处理中深度处理工艺的研究与应用[J].黑龙江环境通报,2023,36(09):145-147.

[3]李杰.解读城市生活废水处理及环境保护的影响[J]. 皮革制作与环保科技,2021(16):131-132.

[4]李卫东.城市生活废水处理工艺及优化措施分析[J]. 资源再生,2021(05):48-50.